Тем не менее есть немало случаев, когда реальный мир действительно отражает правила умножения отрицательных чисел. Например, возбуждение одной нервной клетки может быть подавлено возбуждением второй нервной клетки. Если в этот момент возбуждение второй нервной клетки подавляется третьей нервной клеткой, то первая клетка может снова возбудиться. Косвенное воздействие третьей клетки на первую вызывает ее возбуждение. Таким образом, последовательность двух отрицаний приводит к утверждению. Подобные эффекты происходят и при регуляции генов: белок может включить ген, блокируя другую молекулу, которая подавляла этот отрезок молекулы ДНК.
Возможно, самую понятную параллель можно провести в социально-политической сфере. Как утверждает пословица, «враг моего врага — мой друг». Общеизвестно, что понятия вроде «друг моего врага», «враг моего друга» и тому подобные можно подставить в виде треугольника отношений.[8]
В углы треугольника помещают людей, компании или страны, а соединяющие их стороны показывают отношения между ними, которые могут быть как позитивными, или дружественными (обычно отображаются сплошными линиями), так и негативными, или враждебными (отображаются пунктирными линиями).
Социологи строят треугольники, подобные треугольнику слева, то есть считая отношения между объектами позитивными, так как разумно любить друзей ваших друзей. Точно так же треугольник справа, с двумя негативными и одной позитивной связью, считается сбалансированным, потому что такая комбинация не вызывает разногласий, даже несмотря на две стороны с негативными связями, поскольку ничто так не цементирует дружбу, как ненависть к одному и тому же человеку.
Конечно, треугольники могут быть выведены из состояния баланса. Это происходит в ситуации, когда есть три врага, причем двое из них относятся друг к другу менее враждебно и готовы объединиться, чтобы напасть на третьего.
Еще менее сбалансированным будет треугольник с единственной негативной связью. Например, предположим, что Кэрол хорошо относится и к Элис, и к Бобу, но Боб и Элис не любят друг друга. Возможно, они когда-то встречались и пережили тяжелое расставание, и теперь говорят друг о друге гадости лояльной к обоим Кэрол. Это создает психологическое напряжение между всеми тремя. Чтобы восстановить баланс, либо Элис и Боб должны урегулировать свои отношения, либо Кэрол должна принять чью-то сторону.
Во всех этих случаях логика баланса соответствует логике умножения. В сбалансированном треугольнике знак произведения двух любых сторон, положительный или отрицательный, всегда совпадает со знаком третьей стороны. В несбалансированном треугольнике это правило нарушается.
Не будем касаться вопросов о правдоподобии приведенных моделей, ибо здесь возникают интересные вопросы с чисто математическим привкусом. Например, в связной сети, где все друг друга знают, какое самое устойчивое состояние? Прежде всего это нирвана доброжелательности, где все отношения позитивные, а все треугольники в пределах сети сбалансированы. Однако существуют и другие устойчивые состояния. Например, устойчивое к конфликтам состояние, когда сеть раскололась на два враждебных лагеря (произвольных по величине и составу). Все члены одного лагеря хорошо относятся друг к другу, но враждебны к представителям другого лагеря. (Ничего не напоминает?) Возможно, еще более удивительно то, что эти полярные состояния являются единственно возможными столь же устойчивыми состояниями, как нирвана[9]. В частности, ни у какого трехстороннего раскола не может быть уравновешенных треугольников.
Ученые использовали этот метод для анализа союзов, сложившихся при подготовке к Первой мировой войне[10]. Диаграммы, представленные ниже, показывают союзы между основными державами, участвовавшими в ней: Великобританией, Францией, Россией, Италией, Германией и Австро-Венгрией между 1872 и 1907 гг.
8
Теория баланса впервые была предложена социальным психологом Фрицем Хайдером в 1946 году и с тех пор разрабатывалась и применялась теоретиками социальных сетей, политологами, антропологами, математиками и физиками. Ее исходные положения даны в F. Heider, Attitudes and cognitive organization, Journal of Psychology, Vol. 21 (1946), pp. 107–112, и F. Heider, The Psychology of Interpersonal Relations (John Wiley and Sons, 1958). Обзор по теории баланса с точки зрения социальных сетей см. S. Wasserman and K. Faust, Social Network Analysis (Cambridge University Press, 1994), chapter 6.
9
Теорема, из которой следует, что сбалансированное состояние в полностью связной сети должно быть либо в виде одной нирваны для всех друзей, либо в виде двух взаимно антагонистических группировок, впервые была доказана в D. Cartwright and F. Harary, Structural balance: A generalization of Heider’s theory, Psychological Review, Vol. 63 (1956), pp. 277–293. Очень легко читаемая версия доказательства и простое введение в математику теории баланса дано двумя моими коллегами из Корнельского университета в работе D. Easley and J. Kleinberg, Networks, Crowds, and Markets (Cambridge University Press, 2010).
10
Примеры и графические изображения альянсов до Первой мировой войны взяты из T. Antal, P. L. Krapivsky and S. Redner, Social balance on networks: The dynamics of friendship and enmity, Physica D, Vol. 224 (2006), pp. 130–136, доступной по адресу http://arxiv.org/abs/physics/0605183. Эта статья, написанная тремя физиками, распространяет теорию баланса на динамические структуры, тем самым расширяя ее за пределы ранних статических подходов. Исторические подробности европейских союзов и альянсов приведены в W. L. Langer, European Alliances and Alignments, 1871–1890, 2nd edition (Knopf, 1956) и B. E. Schmitt, Triple Alliance and Triple Entente (Henry Holt and Company, 1934).