Первые пять конфигураций были несбалансированными, потому что каждая из них содержала по крайней мере один несбалансированный треугольник. Возникающие в результате разногласия подталкивали эти страны к изменению конфигурации, тем самым вызывая реверберацию в других частях сети. На последнем этапе Европа раскололась на два непримиримых антагонистских блока, придя к общему балансу, но оказавшись на грани войны.
Однако это не значит, что на основании данной теории можно делать прогнозы. Это не так. Подобный подход не позволяет объяснить все тонкости изменений в геополитике. Но некоторые из наблюдаемых нами явлений происходят в соответствии именно с примитивной логикой «враг моего врага» и отлично подпадают под умножение отрицательных чисел. Отделяя важное от незначительного, арифметика отрицательных чисел может помочь нам отыскать настоящие загадки.
4. Коммутативность: перемена мест сомножителей
Приблизительно каждые десять лет появляются новые методы преподавания математики, что лишний раз заставляет родителей почувствовать себя отставшими от жизни. Еще в 60-е годы прошлого века мои родители были в шоке оттого, что не могли мне помочь выполнить простое домашнее задание — они никогда не слышали о троичной системе счисления и диаграммах Эйлера-Венна.
Сегодня ситуация не изменилась. «Папа, ты можешь показать мне, как делать эти примеры на умножение?» «Конечно могу», — самонадеянно заявил я, пока не довел дочь до истерики. «Нет, папа, сейчас это делают не так! Это устаревший способ! Разве ты не знаешь умножения методом решетки? Нет? Ну а как насчет частичных произведений?»
Эта унизительная ситуация побудила меня пересмотреть процесс умножения с самого начала[11]. И оно, как только вы вникнете в него глубже, действительно оказывается очень тонкой вещью.
Возьмите, например, терминологию. Равно ли трижды семь сумме трех по семь? Или сумме семи по три?
В некоторых культурах язык менее неоднозначен. Один мой друг из Белиза привык читать таблицу умножения так: «Семь один раз — это семь, семь дважды — четырнадцать, семь трижды — двадцать один» и так далее. Такая формулировка позволяет понять, что первое число это множимое, а второе — множитель. Аналогичная игра слов есть и в бессмертных стихах песни Лайонела Ричи[12] «Она однажды, дважды, трижды леди». (Слова «Она леди три раза» никогда не стали бы хитом.)
Может быть, вся эта суета вокруг семантики кажется вам глупой, так как порядок, в котором числа перемножаются, не имеет никакого значения, то есть в любом случае 7 × 3 = 3 × 7. Хорошо, но тут напрашивается вопрос, на котором я хотел бы остановиться подробнее. Является ли этот переместительный (коммутативный) закон умножения a × b = b × a действительно таким очевидным? Помню, меня еще в детстве он удивил, возможно, и вас тоже.
Чтобы привнести немного магии, представьте себе, что вы не знаете, чему равно 7 × 3, и поэтому складываете семерки: 7, 14, 21. Теперь поменяйте местами сомножители и складывайте тройки, получается 3, 6, 9… Чувствуете ли вы все нарастающее недоумение? До сих пор ни одно из чисел в этих перечнях не совпало, но пройдем дальше… 12, 15, 18, и затем — ах! — 21.
Я хочу сказать, что если вы считаете, что умножение соответствует многократному суммированию определенного числа (другими словами, многократному сложению), то коммутативный закон не совсем понятен. Но все проясняется, если представить умножение визуально. Допустим, 7 × 3 — это число точек в прямоугольной матрице с семью строками и тремя столбцами.
Если поставить матрицу набок, она превращается в матрицу, состоящую из трех строк и семи столбцов. Поскольку сама картинка при вращении не изменяется (то есть количество точек сохраняется), то похоже на то, что действительно 7 × 3 = 3 × 7.
Тем не менее, как ни странно, во многих реальных ситуациях, особенно когда дело касается денег, люди, кажется, забывают о коммутативном законе умножения. Позвольте привести два примера.
Предположим, вы собрались купить новые джинсы. Их продают со скидкой 20 % от цены 50 долларов, указанной на этикетке, что выглядит заманчиво, но имейте в виду, что вам также придется заплатить 8 % налога с продаж. После того как продавщица закончит нахваливать, как великолепно джинсы на вас сидят, и начнет оформлять покупку, она сделает паузу и заговорщицки шепнет: «Позвольте мне сэкономить ваши деньги. Я сначала посчитаю налог, а затем 20 %-ную скидку от полученной суммы. Хорошо?»
11
Кит Девлин написал провокационную серию очерков о природе умножения: что это такое, что в нем не так и почему определенные виды мышления более ценны и надежны в процессе умножения, чем другие. Он рассматривает умножение как масштабирование, не сводя его к процессу суммирования, и показывает, что эти два понятия (умножение как масштабирование и умножение как суммирование) существенно разнятся в реальных условиях. См. его январскую (2011 года) статью What exactly is multiplication? на http://archive.is/qCkK, а также три более ранних 2008 года: It ain’t no repeated addition (http://www.maa.org/devlin/devlin_06_08.html), It’s still not repeated addition (http://www.maa.org/devlin/devlin_0708_08.html) и Multiplication and those pesky British spellings (http://www.maa.org/devlin/devlin_09_08.html). Эти статьи активно обсуждались в среде блогеров, особенно среди учителей.
12
Американский исполнитель поп-музыки, снискавший мировую славу в 1980-х годах.