Но что-то вас смущает. «Нет, спасибо, — говорите вы. — Не могли бы вы сначала вычесть 20 %-ную скидку, а затем снять налог с цены покупки? Тогда я заплачу меньше».
Какой способ более выгоден для вас? (Предположим, что оба законны.)
Столкнувшись с подобной задачей, многие решают ее последовательным суммированием. Они вычисляют налоги и скидки в соответствии с заданным сценарием, а затем, чтобы определить окончательную цену, выполняют необходимое сложение или вычитание.
Если вы согласитесь с продавцом, то налог составит 4 доллара (8 % от цены на этикетке). И цена джинсов увеличится до 54 долларов. Тогда при 20 %-ной скидке от 54 долларов возвращенная сумма будет равняться 10,80 доллара. Итак, в конечном счете вы заплатите 54 доллара минус 10,80 доллара, что в сумме даст 43,20 доллара.
В соответствии же с вашим сценарием сначала будет вычитаться 20 % скидки (на чем вы сэкономите 10 долларов от цены на этикетке). Тогда 8 % налога на льготную цену в 40 долларов составят 3,20 доллара, так что вы все равно в конечном итоге заплатите 43,20 доллара. Удивительно?!
Но это же просто коммутативный закон в действии. Чтобы это понять, необходимо думать в стиле последовательного умножения, а не последовательного сложения. 8 % налога и последующая за ним 20 %-ная скидка вычисляются путем умножения цены на этикетке на 1,08 и последовательным умножением полученного результата на 0,80. Изменение порядка вычисления налога или скидки просто меняет местами сомножители, но, поскольку выполняется равенство 1,08 × 0,80 = 0,80 × 1,08, окончательная цена получается одинаковой[13].
Соображения, подобные этим, возникают и при принятии решений о больших финансовых сделках. Лучше или хуже традиционного пенсионного плана новый план недавно, принятый Конгрессом США (закон Roth 401(k))[14]? И вообще, если у вас есть куча денег, которые вы намерены инвестировать, но на них нужно платить налоги, то когда лучше это делать — в начале инвестиционного периода или в конце?
Повторяю еще раз: коммутативный закон показывает, что при всех прочих равных условиях (которые, к сожалению, часто таковыми не являются) вы ничего не выигрываете. Если при обоих сценариях факторы роста денег и размеры налога одинаковы, то не имеет никакого значения, когда вам платить налоги — авансом или в конце периода.
Пожалуйста, не принимайте эти математические рассуждения за финансовый совет. Тем, кто сталкивается с решением подобных проблем, нужно учитывать, что в реальной жизни все не так просто. После выхода на пенсию вы предполагаете оказаться в верхней или нижней точке налоговой шкалы? Намерены ли вы полностью обнулить свой банковский депозит? Как думаете, правительство изменит налоговую политику при снятии денег со счетов к тому времени, когда вы соберетесь их взять, или нет? Но хватит об этом. И не поймите меня неправильно, это все важно и для меня, но здесь я пытаюсь сосредоточиться на более простых математических задачах и просто хочу показать, что коммутативный закон имеет отношение к анализу таких решений.
Об этом ведутся горячие споры на различных финансовых сайтах в интернете. Но даже после того как была показана актуальность коммутативных законов, некоторые блогеры с этим не согласились. Что, по большому счету, противоречит здравому смыслу.
Возможно, мы запрограммированы не доверять коммутативному закону, потому что в повседневной жизни, как правило, имеет значение то, что мы делаем в первую очередь. Нельзя одновременно брать кусок пирога и есть его. И снимать ботинки и носки тоже нужно в правильной последовательности.
Физик Мюррей Гелл-Манн как-то в ходе тревожных размышлений о своем будущем тоже пришел к аналогичному выводу. Закончив Йельский университет, он отчаянно хотел остаться в Лиге плюща[15]. К сожалению, в Принстон его не приняли. В Гарвард взяли, но без финансовой помощи он протянул бы ноги. Лучшим из возможных вариантов оказался Массачусетский технологический институт (но он не входил в Лигу плюща). В глазах амбициозного Гелл-Манна это учебное заведение было не очень престижным. Тем не менее он принял предложение. Много лет спустя он признался, что в тот момент подумывал о самоубийстве, но решил этого не делать, как только понял, что посещение Массачусетского технологического института и самоубийство нельзя переставить (поменять местами)[16]. Он мог бы пойти учиться в Массачусетский технологический институт, а потом убить себя, но не наоборот.
Гелл-Манна, вероятно, впечатлила важность принципа коммутативности. Но в квантовой физике он бы обнаружил, что на самом глубинном уровне природа не подчиняется коммутативному закону. И это тоже хорошо, поскольку благодаря нарушению коммутативного закона мир таков, каков он есть. Именно поэтому материя является твердой и атомы не разрушаются.
13
В примере с джинсами порядок применения налогового сбора и скидки для вас не имеет значения — в обоих сценариях вы в конечном итоге платите 43,20 доллара. Но для правительства и магазина он весьма существенен! В сценарии продавщицы (при котором вы платите налог в зависимости от первоначальной цены) вы заплатите 4 доллара налога, в вашем сценарии — всего 3,20 доллара. Я не знаю, одинаков ли закон о налоге на продажи во всех штатах, но рациональнее всего взимать его на основе фактической цены в магазине. Дальнейшее обсуждение этих вопросов см. http://www.facebook.com/TeachersofMathematics/posts/166897663338316.
14
Обсуждение достоинств и недостатков закона Roth 401(k) см. публикации Commutative law of multiplication (http://thefinancebuff.com/commutative-law-of-multiplication.html) и The new Roth 401(k) versus the traditional 401(k): Which is the better route? (http://www.thesimpledollar.com/2007/06/20/the-new-roth-401k-versus-the-traditional-401k-which-is-the-better-route/).
15
Лига плюща — группа самых престижных частных колледжей и университетов на северо-востоке США, которые славятся высоким уровнем обучения и научных исследований. Название связано с тем, что по английской традиции стены университетов — членов Лиги увиты плющом.
16
Эта история о Мюррее Гелл-Манне рассказывается в G. Johnson, Strange Beauty (Knopf, 1999), p. 55. По словам самого Гелл-Манна, хотя его приняли в «страшный» Массачусетский технологический институт, он «рассматривал самоубийство как единственный выход из положения, если пролетаешь мимо Лиги плюща». «Мне пришло в голову (и это интересный пример некоммутирующих операторов), что можно попробовать учебу в Массачусетском технологическом институте и убить себя позже, в то время как обратный порядок событий невозможен». Этот отрывок приведен в H. Fritzsch, Murray Gell-Mann: Selected Papers (World Scientific, 2009), p. 298.