Стивен Строгац. Удовольствие от Икс
Предисловие
У меня есть друг, который, несмотря на своё ремесло (он — художник), страстно увлечён наукой. Всякий раз, когда мы собираемся вместе, он с энтузиазмом рассуждает о последних достижениях в области психологии или квантовой механики. Но стоит нам заговорить о математике — и он чувствует дрожь в коленках, что его сильно огорчает. Он жалуется, что эти странные математические символы не только не поддаются его пониманию, но порой он даже не знает, как их произносить.
На самом деле причина его неприятия математики гораздо глубже. Он никак не возьмёт в толк, чем математики вообще занимаются и что имеют в виду, когда говорят, что данное доказательство изящно. Иногда мы шутим, что мне нужно просто сесть и начать его учить с самых азов, буквально с 1+1=2, и углубиться в математику настолько, насколько он сможет.
И хотя эта затея кажется безумной, именно её я и попытаюсь осуществить в данной книге. Я проведу вас по всем основным разделам науки, от арифметики до высшей математики, чтобы те, кто хотел получить второй шанс, наконец смогли им воспользоваться. И на сей раз вам не придётся садиться за парту. Эта книга не сделает вас экспертом в математике. Зато поможет разобраться в том, что изучает данная дисциплина и почему она так увлекательна для тех, кто это понял.
Мы узнаем, как слэм-данки[1] Майкла Джордана могут помочь объяснить азы исчисления. Я покажу вам простой и потрясающий способ, как понять основополагающую теорему евклидовой геометрии — теорему Пифагора. Мы постараемся добраться до самой сути некоторых тайн жизни, больших и малых: убивал ли свою жену Джей Симпсон[2]; как перекладывать матрас, чтобы он прослужил максимально долго; сколько партнёров нужно сменить перед тем, как сыграть свадьбу, — и увидим, почему одни бесконечности больше, чем другие.
Математика повсюду, надо только научиться её узнавать. Можно разглядеть синусоиду на спине зебры, услышать отголоски теорем Евклида в Декларации о независимости; да что там говорить, даже в сухих отчётах, предшествовавших Первой мировой войне, присутствуют отрицательные числа. Также можно увидеть, как на нашу сегодняшнюю жизнь влияют новые направления математики, например, когда мы ищем рестораны с помощью компьютера или пытаемся хотя бы понять, а ещё лучше — пережить пугающие колебания фондового рынка.
По случайному, хотя и уместному для книги о числах совпадению, идея её написания родилась в день, когда мне исполнилось пятьдесят. Дэвид Шипли, автор нескольких обзорных статей в New York Times, как раз пригласил меня (не зная о моём полувековом юбилее) на обед. Он спросил, не хочу ли я написать серию статей о математике для его читателей. Мне очень понравилась эта идея, и я был готов поделиться радостью от занятий математикой не только с моим любознательным другом-художником, но и с более широкой аудиторией.
Серия из 15 статей под общим названием «Основы математики» появилась в сети в конце января 2010 года. В ответ на их публикацию посыпались письма и комментарии от читателей всех возрастов, среди которых было много студентов и преподавателей. Встречались и просто любознательные люди, по тем или иным причинам «сбившиеся с пути» постижения математической науки; теперь же они почувствовали, что упустили что-то сто́ящее, и хотели бы попробовать ещё раз. Особую радость мне доставляли благодарности от родителей за то, что они с моей помощью смогли объяснить математику своим детям, да и сами стали лучше её понимать. Казалось, что даже мои коллеги и товарищи, горячие поклонники этой науки, получали удовольствие от чтения статей, за исключением тех моментов, когда они наперебой предлагали всевозможные рекомендации по улучшению моего детища.
Несмотря на расхожее мнение, в обществе наблюдается явный интерес к математике, хотя этому феномену и уделяют мало внимания. Мы только и слышим, что о страхе перед математикой, и тем не менее, многие с радостью бы попробовали разобраться в ней лучше. И стоит этому случиться — их уже будет трудно оторвать.
Данная книга познакомит вас с самыми сложными и передовыми идеями из мира математики. Главы небольшие, легко читаются и особо не зависят друг от друга. Среди них есть и вошедшие в ту, первую серию статей в New York Times. Так что как только почувствуете лёгкий математический голод, не раздумывая беритесь за следующую главу. Если захотите подробнее разобраться в заинтересовавшем вас вопросе, то в конце книги есть примечания с дополнительной информацией и рекомендациями, что ещё об этом можно почитать.
Для удобства читателей, которые предпочитают пошаговый подход, я разбил материал на шесть частей в соответствии с традиционным порядком изучения тем.
Часть I «Числа» начинает наше путешествие с арифметики в детском саду и начальной школе. В ней показано, насколько полезными бывают числа и как они магически эффективны при описании окружающего мира.
Часть II «Соотношения» переводит внимание с самих чисел на соотношения между ними. Эти идеи лежат в основе алгебры и являются первыми инструментами для описания того, как одно влияет на другое, проявляя причинно-следственную связь самых разных вещей: спроса и предложения, стимула и реакции — словом, всех видов отношений, которые делают мир столь многогранным и богатым.
Часть III «Фигуры» повествует не о числах и символах, а о фигурах и пространстве — вотчине геометрии и тригонометрии. Эти темы, наряду с описанием всех обозримых объектов посредством форм, с помощью логических рассуждений и доказательств поднимают математику на новый уровень точности.
В части IV «Время перемен» мы рассмотрим исчисления — самое впечатляющее и многогранное направление математики. Исчисления позволяют предсказать траекторию движения планет, циклы приливов и отливов и дают возможность понять и описать все периодически меняющиеся процессы и явления во Вселенной и внутри нас. Важное место в этой части отведено изучению бесконечности, усмирение которой стало прорывом, позволившим вычислениям заработать. Вычисления помогли решить многие задачи, возникшие ещё в античном мире, и это, в конечном счёте, привело к революции в науке и современном мире.
Часть V «Многоликие данные» имеет дело с вероятностью, статистикой, сетями и обработкой данных — это всё ещё относительно молодые области, порождённые не всегда упорядоченными сторонами нашей жизни, такими как возможность и удача, неуверенность, риск, изменчивость, хаотичность, взаимозависимость. Используя подходящие средства математики и соответствующие типы данных, мы научимся обнаруживать закономерность в потоке случайностей.
В конце нашего путешествия в части VI «Границы возможного» мы приблизимся к пределам математического знания, к пограничной области между тем, что уже известно, и тем, что пока неуловимо и не познано. Мы вновь пройдёмся по темам в уже знакомом нам порядке: числа, соотношения, фигуры, изменения и бесконечность, — но при этом рассмотрим каждую из них более глубоко, в её современном воплощении.
Я надеюсь, что все идеи, описанные в этой книге, покажутся вам увлекательными и не раз заставят воскликнуть: «Ну и ну!» Но всегда с чего-то нужно начинать, поэтому давайте начнём с простого, но такого завораживающего действия, как счёт.
Часть I. Числа
1. Основы чисел: сложение рыбок
Лучшую демонстрацию концепции чисел, которую я когда-либо видел (самое ясное и забавное объяснение того, что такое числа и зачем они нам нужны), я наблюдал в одном из выпусков популярной детской передачи «Улица Сезам», который называется «123: считаем вместе» (123 Count with Me). Хамфри, добродушный, но недалёкий персонаж с розовой шёрсткой и зелёным носом, работающий в отеле «Мохнатые лапы», в обеденное время принимает по телефону заказ от пингвинов-постояльцев. Внимательно их выслушав, Хамфри передаёт заказ на кухню: «Рыбка, рыбка, рыбка, рыбка, рыбка, рыбка». Увиденное побуждает Эрни рассказать Хамфри о достоинствах числа шесть.
1
Слэм-данк — вид броска в баскетболе, при котором игрок выпрыгивает вверх и одной или двумя руками бросает мяч сквозь кольцо сверху вниз.
2
Джей Симпсон — известный игрок в американский футбол. Сыграл роль детектива Нортберга в знаменитой трилогии «Голый пистолет». Был обвинён в убийстве бывшей жены и её друга и оправдан, невзирая на улики.