Таким образом, человек уже переходил к количественным сравнительным измерениям[4].
Представление о числе постепенно обогащалось и расширялось. От счета отдельных предметов (натуральных чисел) человек со временем перешел к понятию целых положительных чисел. От понятия «натуральных» чисел выросло понимание (абстрактное понятие) безграничности, бесконечности натурального ряда чисел = 1, 2, 3, 4 … х: Чтобы измерить длину, площадь, величины которых не укладываются в целое число, человек стал это целое дробить. Но числовой ряд можно вести не только в сторону увеличения, но и в сторону уменьшения. Так зародилось понятие «отрицательное число» –4, –3, –2, –1. Оно возникло у индейцев в VI–XI вв. Потребность в определении отношений между натуральными числами (к примеру, диагонали квадрата к его сторонам) породило понятие «иррационального числа». Рациональные и иррациональные числа составляют множество действительных чисел. В XVI веке в связи с решением квадратных и кубических уравнений появилось понятие «комплексное» число [6. С. 1772].
Чудеса с мнимыми числами. Мнимое — это такое число, которое не имеет аналога в реальном мире. Но совсем недавно физики (!) выяснили, что мнимые числа реальны в мире квантов. Ученые провели эксперимент: отправляли запущенные фотоны в два улавливающие их приемники. И если этим приемникам «разрешали» использовать мнимые числа, компьютеры с точностью до 100 % вычисляли квантовые состояния фотонов; как только «запрещали» — результат нулевой. Вывод: «мнимые числа вполне реальны в квантовом мире (мире нейтральных элементарных частиц) и без них не обойтись» [10. — 2021. — № 12. — с. 2]. Фантастика: сейчас ученые работают над созданием квантовых… компьютеров [11. — 2022. — № 38. С. 8].
Но число без его практического использования для количественных измерений становится не только мнимым, но и мертвым инструментом. А вместе с осмыслением места и роли числа у человека появились понимание, возможность и необходимость в простейших арифметических действиях: в сложении и вычитании, в умножении и делении, т. е., в вычислениях через сравнения. Без овладения азами (!) этой премудрости человечество не пришло бы вообще к математике — родоначальнице множества открытий как в естественных, так и в гуманитарных науках. Даже к философии…
Итак, математика. Наука и искусство умственных усилий человека с количественными понятиями. С поисками ответа не просто на вопрос «Сколько?», а насколько больше-меньше, раньше-позже. Человечество пришло к такому пониманию вычислений тысячелетия назад. Пришло с помощью математических гениев древности. Но простое запоминание (зазубривание) элементарных правил счета не означает, что человек овладел логикой математического мышления. Ведь что основное в математике? Это творчество, это движение мысли, логика, а не выучивание формул, не просто таблица умножения.
Известный русский сатирик Аркадий Аверченко (1881–1925) в рассказе «Бельмесов» рисует такую картину.
— Кувшинников!.. Сколько будет пятью шесть?
— Тридцать.
— Правильно, молодец. Ну, а сколько будет, если помножить пять деревьев на шесть лошадей?
4
Учителю математики на заметку. «Есть все основания полагать, что действия с «числами», составляющие традиционную «арифметику», далеко не самые «простые», а арифметика вовсе не составляет самого «первого этажа» математического мышления. Скорее таким этажом оказываются некоторые понятия, обычно относимые к алгебре». Почему? Да потому, что «анализ показывает, что и в истории знания «алгебра»… должна была возникнуть не позже «арифметики»… ибо речь идет о действительной истории развития математических знаний, математической логики мышления [См. Ильенков. «Школа должна учить мыслить» [8. С. 6–54]