Выбрать главу

Пифагорейцы сделали числа основой своей философии, но мы так и не знаем, как они их изображали. Их одержимость квадратными и треугольными числами позволяет предположить, что они обозначали числа сочетаниями точек. В период классицизма, между 600 и 300 г. до н. э., греческая система снова изменилась, и 27 разных букв их алфавита стали выражать числа от 1 до 900, как в этой таблице.

Здесь мы уже видим строчные греческие буквы, дополненные тремя дополнительными, заимствованными из финикийского алфавита: (стигма), (коппа) и (сампи).

Чтобы отличать буквы, обозначающие цифры, греки ставили над ними горизонтальную черту. Для чисел больше 999 значение их символа могло быть умножено на 1000, если перед ним поставить штрих.

Разные способы, предложенные греками, удовлетворяли потребность записывать результаты подсчетов, но не были приспособлены для выполнения самих расчетов (попробуйте, например, представить себе умножение σμγ на ωλδ). Возможно, процесс подсчета был заменен использованием абака или просто камешками в песке, особенно в ранние времена.

Дроби греки записывали несколькими путями. Первый – числитель, за ним один штрих (′), а за ним знаменатель с двумя штрихами (′′). Часто знаменатель записывали дважды. Итак, 21/47 будет выглядеть как:

κα′ μζ′′ μζ′,

где κα равно 21, а μζ – 47. Также они использовали дроби, похожие на египетские, где имелся особый символ для 1/2. Некоторые греческие астрономы, особенно Птолемей, использовали шестидесятиричную вавилонскую систему для точности, но греческие символы для самой записи чисел. Это вовсе не похоже на то, чем мы пользуемся сегодня. Фактически это полный хаос.

Индийские цифры

Символы, которые используются сейчас в десятеричной системе, часто называют индийско-арабскими, потому что они происходят из Индии, откуда их позаимствовали арабы и позже усовершенствовали.

Самые ранние индийские цифры больше всего напоминают символы древних египтян. Например, в текстах кхароштхи, датируемых 400 г. до н. э. – 100 г. н. э., встречаются такие обозначения чисел от 1 до 8:

| || ||| X |X ||X |||X XX

с особым символом для 10. Первые признаки того, что постепенно приняло вид современной системы чисел, обнаружены в текстах брахми, датируемых примерно 300 г. до н. э. В буддийских текстах того времени найдены прообразы позднейших индийских символов для 1, 4 и 6. Но в системе брахми использовались разные символы для умножения на 10 и на 100, т. е. она оказалась ближе к греческой символике. Разница в том, что здесь предпочтение отдавалось символам, а не буквам алфавита. Брахми не была позиционной системой. К 100 г. н. э. сформировалась ее полная запись. Изображения в пещерах и на монетах доказывают, что ею продолжали пользоваться до IV в. н. э.

В IV–VI вв. на большую часть Индии распространилась власть империи Гуптов, и система чисел брахми преобразуется в систему гупта. Затем ее преобразуют в систему нагари. Суть оставалась прежней, менялись лишь символы.

Возможно, индусы изобрели позиционную систему еще в I в. н. э., но первые достоверные свидетельства использования такой записи чисел относятся к 594 г. Существует официальный документ, датированный 346 г. по календарю Чеди, но ряд ученых считают эту дату поддельной. Однако есть общее мнение, что позиционную систему в Индии стали использовать около 400 г. н. э.

Цифры в системе брахми

Однако, поскольку символов было всего девять, от 1 до 9, возникала проблема двусмысленности обозначения. Например, что значит 25? Это может (в нашей системе) значить 25, или 205, или 2005, или 250 и т. д. В позиционной системе, где значение цифры зависит еще и от ее места, очень важно определить положение так, чтобы избежать двусмысленности. Сегодня мы добиваемся этого, используя десятый символ – ноль (0). А у древних цивилизаций ушло немало времени на то, чтобы выявить проблему и решить ее таким путем. Одной из причин была философская: как может ноль быть цифрой, если цифра обозначает количество предметов? Разве ничто можно сосчитать? Другая – практическая: обычно из контекста и так было ясно, что 25 означает именно 25, или 250, или что-то еще.