Выбрать главу

Его книга открывает для Европы индийско-арабский способ записи чисел и содержит почти все арифметические и алгебраические сведения того времени, изложенные исключительно полно и глубоко, а также дает примеры решения практических задач, в частности связанных с торговлей. И хотя прошло еще несколько веков, пока индийско-арабские символы окончательно вытеснили из обихода привычный абак, преимущества этой стройной системы записи и подсчетов вскоре стали очевидны.

Леонардо также известен под прозвищем Фибоначчи (от Filius Bonacci, или «сын Боначчи»), но это имя не появлялось в письменных трудах до XVIII в. Псевдоним был дан ему позже, предположительно Гийомом Либри.

Мы не так часто прибегаем на практике к обыкновенным дробям. Гораздо чаще используются десятичные: например, π = 3,14159 – не точно, но вполне достаточно для большинства подсчетов. Стоило бы сделать рывок к десятичным дробям, но мы договорились следовать за идеей, а не хронологией, и придется перейти к дальнейшим фактам. Итак, переносимся в 1585 г., когда Вильгельм Оранский избрал фламандца Симона Стевина советником своего сына Морица, графа Нассауского.

Воспользовавшись возможностью, Стевин сумел сделать хорошую карьеру, став инспектором водных сооружений, главным военным квартирмейстером и под конец – министром финансов. Он быстро осознал необходимость в точных процедурах бухгалтерского учета и обратился к итальянским математикам эпохи Возрождения, а также к переложению для Европы индийско-арабской системы счисления, сделанному Леонардо Пизанским. Он находил вычисления при помощи простых дробей громоздкими и неудобными и предпочел бы более точную и аккуратную систему, предложенную вавилонянами, – если бы в ее основании не находилось число 60. Стевин попытался найти вариант, сочетавший лучшие черты подходов, и изобрел десятеричный аналог вавилонской системы – десятичные дроби.

Стевин опубликовал арифметику десятичных дробей, а также пылкую и аргументированную статью о полезности их применения: «Все необходимые для делопроизводства вычисления можно будет делать с помощью целых чисел, без добавления дробей».

В его системе еще не использовалась знакомая нам запятая, но она очень скоро приняла современный вид. Там, где мы бы написали 5,7731, Стевин писал . Символ обозначал целое число,  – одну десятую,  – одну сотую и т. д. Привыкнув к этой системе, люди вскоре отказались от символов , и т. д., оставив только , который сократился и упростился до обычной запятой.

Отрицательные числа

Математики все числа, употребляемые при счете, называют натуральными. Добавив к ним отрицательные числа, мы получим множество целых чисел. Рациональные числа – положительные и отрицательные дроби, вещественные числа (действительные) – положительные и отрицательные десятичные дроби со сколь угодно большим числом цифр после запятой.

Как же отрицательные числа вошли в историю?

На заре первого тысячелетия в Китае вместо абака пользовались системой счетных палочек. Чтобы изображать числа, их выкладывали группами.

Верхний ряд на картинке показывает вертикальные палочки, представляющие единицы, сотни, десятки тысяч и т. д., соответствовавшие их положению в ряду символов. Нижний – горизонтальные палочки, представляющие десятки, тысячи и т. д. Здесь мы имеем два чередующихся типа. Подсчеты велись с помощью обоих типов палочек.

Счетные палочки древних китайцев

Для решения системы двух линейных уравнений китайские математики должны были разложить палочки на столе. Они использовали красные для чисел, которые собирались прибавлять, и черные – для вычитания. И тогда для решения системы уравнений, которую мы бы записали так:

3x – 2y = 4

x + 5y = 7,

они бы выложили в виде двух колонок на столе: одно с числами 3 (красные), 2 (черные), 4 (красные) и другое – 1 (красная), 5 (красные), 7 (красные).