Тригонометрия основана на ряде особых функций, из которых основными считаются синус, косинус и тангенс. Они применимы к углу, традиционно представленному греческой буквой θ (тета), и могут быть определены в терминах прямоугольного треугольника, чьи три стороны a, b и c соответственно называются прилежащим и противолежащим катетами и гипотенузой.
Тогда:
синус тета равен sin θ = b/c,
косинус тета равен cos θ = a/c,
тангенс тета равен tan θ = b/a.
Получается, что значения этих трех функций для заданного угла θ определяет геометрия треугольника (одинаковый угол может быть у треугольников разных размеров). Но геометрия подобных треугольников подразумевает, что коэффициент подобия между ними не зависит от их размера. Однако когда эти функции были вычислены и занесены в таблицы, с их помощью стало легко «решать» треугольник (вычислять все его стороны и углы) по величине θ. Взаимоотношения между тремя функциями были описаны множеством красивых формул. В частности, теорема Пифагора заключает в себе следующее:
sin2 θ + cos2 θ = 1.
Судя по всему, тригонометрия ведет происхождение от астрономии, где относительно просто измерить углы, но очень трудно – невообразимые расстояния. Греческий астроном Аристарх в своем труде, датируемом примерно 260 г. до н. э., «О величинах и расстояниях Солнца и Луны», определил, что Солнце удалено от Земли на расстояние, от 18 до 20 раз большее, чем расстояние от Земли до Луны. (Точная цифра ближе к 400, но Евдокс Книдский и Фидий доказывали, что верное число – 10.) Его объяснение было таково: когда Луна достигает половины полного размера, угол между направлениями от наблюдателя к Солнцу и Луне равен примерно 87° (в современных единицах). Используя свойства треугольников, что равнозначно тригонометрической оценке, он определил (в современных единицах), что величина sin 3° лежит между 1/18 и 1/20, что приводит к оценке соотношения расстояний до Солнца и до Луны. Сам метод был верен, не хватало точности наблюдений: точный угол равен 89,8°.
Положение Солнца, Луны и Земли, когда освещена половина Луны
Первые тригонометрические таблицы составил Гиппарх примерно в 150 г. до н. э. Вместо современной функции синуса он использовал очень близкое понятие, что с геометрической точки зрения было совершенно естественным. Представьте себе круг с двумя радиусами, которые образуют угол θ. Конечные точки радиусов на окружности можно соединить прямой, называемой хорда. Также их можно принять как конечные точки дуги окружности.
Дуга и хорда, соответствующие углу θ
Гиппарх составил таблицу соответствующих длин дуг и хорд для углов разной величины. Если радиус круга равен 1, то длина дуги равна θ в радианах. Простые геометрические построения демонстрируют, что длина хорды в современной нотации равна 2sin θ/2. Итак, мы видим, что вычисления Гиппарха очень близко подводят нас к таблице синусов, хотя они и не были представлены именно в таком виде.
Астрономия
Любопытно, что первые труды по тригонометрии были гораздо сложнее, чем большая часть материала, преподаваемого сегодня в школе, и снова благодаря астрономии (и позже навигации). Здесь мы имеем дело с естественным пространством, которое представляет собой не плоскость, а сферу. Небесные тела можно представить расположенными на воображаемой гигантской сфере. И самым точным представлением о небе будет его внутренняя поверхность, окружающая наблюдателя: на таком расстоянии действительно может показаться, что они лежат на этой сфере.
Как следствие, астрономические вычисления связаны с геометрией сферы, а не плоскости. Соответственно, и требования к ним определяются не плоскостной геометрией и тригонометрией, а геометрией и тригонометрией сферы. Одной из самых ранних работ на эту тему считают сочинение Менелая «Сферика» примерно 100 г. н. э. Пример одной из его теорем, не имеющей аналогов в геометрии Евклида, таков: если два треугольника имеют одинаковые углы, то они конгруэнтны – т. е. совпадают как по размеру, так и по форме (по Евклиду они подобны: имеют одну форму, но, возможно, разные размеры). В сферической геометрии сумма углов треугольника превышает 180°. Например, треугольник, чьи вершины лежат на Северном полюсе и двух точках экватора, разнесенных на 90°, явно имеет три прямых угла, т. е. их сумма равна 270°. И чем больше размеры треугольника, тем больше сумма его углов. Фактически эта сумма минус 180° пропорциональна общей площади треугольника.