Рассмотрим типичный случай: Руководитель принимает решение, руководствуясь интуицией, поскольку после длительных размышлений явного фаворита не обнаруживается. Боясь взять на себя ответственность за интуитивное решение, руководитель нанимает дорогостоящую консалтинговую компанию, чтобы обосновать решение, которое уже было принято с помощью впечатляющего набора цифр и аналитики.
Как часто это происходит в крупных корпорациях? Когда один из нас (Гигеренцер) спросил директора одной из крупнейших консалтинговых фирм мира, сколько проектов фирмы связано с обоснованием уже принятых решений, тот ответил (на условиях анонимности), что более 50 процентов.
Подумайте, сколько денег, времени и усилий можно было бы потратить впустую, если бы организации серьезно относились к эвристике и изучали, как и когда она работает. В результате им не пришлось бы скрывать тот факт, что они регулярно используют эвристику. Вместо этого они могли бы чувствовать себя хорошо, принимая компетентные решения в мире неопределенности. Мы считаем, что настало время пересмотреть представление об эвристике в менеджменте и бизнесе, превратив ее из предвзятой в умную.
Примечания
1 . Франклин (1907/1779).
2 . Ариели (2008); Канеман (2011).
3 . Knight (1921).
4 . Нобелевская премия (2022).
5 . Фридман и др. (2014, с. 3).
6 . Geman, Bienenstock, and Doursat (1992).
7 . Саймон (1988, с. 286).
8 . Кэтлин Саймон Фрэнк, личная переписка по электронной почте, 26 января 2019 г.
9 . Bower (2011).
10 . DeMiguel, Garlappi, and Uppal (2009).
11 . Эта версия взята из Gigerenzer (2007).
12 . Селтен (1978, с. 132-133).
13 . Адмати и Хеллвиг (2013).
14 . Гигерензер и Селтен (2001).
15 . Например, Gigerenzer, Hertwig, and Pachur (2011).
2 Почему эвристика?
Термин "эвристика" имеет греческое происхождение и означает "служащий для выяснения или обнаружения". Гештальт-психологи Макс Вертхаймер и Карл Данкер использовали его именно в этом смысле, говоря о таких эвристических методах, как оглядывание по сторонам, чтобы направлять поиск информации. Альберт Эйнштейн также включил этот термин в название своей работы по квантовой физике, получившей Нобелевскую премию в 1905 году, чтобы показать, что излагаемая им точка зрения - это неполный, но очень полезный путь к открытию чего-то более близкого к истине. 1 Математик Джордж Полья утверждал, что наука требует как аналитических, так и эвристических инструментов; анализ, например, необходим для проверки доказательства, но эвристика нужна для того, чтобы обнаружить доказательство в первую очередь. 2
Вместе с Алленом Ньюэллом, студентом Полы, Герберт Саймон внедрил эвристический поиск, чтобы сделать компьютеры более интеллектуальными. В результате появилась оригинальная программа искусственного интеллекта (ИИ), которая изучала эвристики, используемые экспертами, и переводила их в компьютерные алгоритмы. Здесь человек был учителем, а компьютер - учеником. Именно поэтому "И" в ИИ изначально обозначало человеческий интеллект или, точнее, человеческую эвристику, признавая тот факт, что эвристика может решать задачи, которые не под силу логике и вероятности. Такое видение психологического ИИ отличается от систем машинного обучения, которые полагаются на грубую вычислительную мощь. Несмотря на свою выдающуюся производительность и популярность, эти системы пока не смогли создать то, что можно назвать человеческим интеллектом, и в настоящее время психологический ИИ пересматривается как путь к настоящему машинному интеллекту. 3
Саймон также сформулировал одну из первых алгоритмических моделей эвристики, известную как сатисфакция. 4 Сатисфакция может приводить к хорошим решениям в ситуациях, когда оптимизация невозможна. Однако этот взгляд на эвристику как на полезный инструмент был перевернут в 1970-х годах, когда исследователи начали ассоциировать эвристику с предубеждениями и представили теорию ожидаемой полезности как универсальный инструмент для всех решений. 5 Влияние программы "эвристика и предубеждения" может быть одной из причин того, что положительные свойства эвристики остались недооцененными в менеджменте и бизнесе. 6 Начиная с 1990-х годов, программа быстрой и экономной эвристики подхватила незаконченную работу Саймона и расширила ее, разработав алгоритмические модели эвристики и введя понятие экологической рациональности, которое относится к условиям, при которых эвристика является успешной или нет. 7 Эти две важные особенности, алгоритмические модели и экологическая рациональность, расширяют и улучшают предыдущую программу эвристики и биасов: они позволяют изучать конкретные правила, которые помогают организациям принимать лучшие решения в условиях неопределенности. Эти две программы следует рассматривать не как антагонистические, а скорее как естественные шаги на пути к прогрессу.