Было бы несправедливо делать вывод о том, что ИИ в целом потерпел неудачу в бизнесе. В некоторых областях, таких как автоматизация и логистика, алгоритмы ИИ добились значительных успехов. Поэтому важным вопросом является вопрос экологической рациональности: При каких условиях следует использовать ИИ? В этой главе мы противопоставляем сложные алгоритмы ИИ простым эвристикам, обсуждаем их с точки зрения экологической рациональности и утверждаем, что для процветания бизнеса в будущем необходимы и те, и другие. Основная мысль заключается в том, что умные организации и руководители должны осознавать ограничения сложных алгоритмов ИИ и помнить о том, что простые эвристики часто могут быть более полезными при принятии решений.
Принцип стабильного мира
Почему алгоритмы искусственного интеллекта могут побеждать лучших людей в шахматах, го и Jeopardy!, но не могут превзойти обычных людей в предсказании рецидивизма и поиске подходящего партнера? 5 Ответ можно получить из различия между малыми и большими мирами, введенного в главе 2. Принцип стабильного мира определяет области и границы, в которых алгоритмы ИИ могут преуспеть.
Принцип стабильного мира: Сложные алгоритмы лучше работают в четко определенных, стабильных ситуациях, когда доступны большие объемы данных. Адаптивная эвристика эволюционировала, чтобы справляться с неопределенностью, независимо от того, большие или малые данные доступны.
Этот принцип позволяет понять, почему алгоритмы ИИ дают отличные результаты для одних задач, но не для других. В качестве примера можно привести успех Watson в игре "Jeopardy!", но провал в медицинских исследованиях, поскольку, в отличие от "Jeopardy!", лечение рака не является четко определенной проблемой с устойчивыми правилами.
Герберт Саймон - один из основателей искусственного интеллекта. В его работах ИИ включает в себя анализ эвристик, которые эксперты используют при решении проблем, и их включение в программное обеспечение, чтобы сделать компьютеры умными. Эвристический поиск стал частью прогресса в области ИИ и позволил справиться с неопределенностью и трудноразрешимостью, чего не мог сделать более ранний, основанный на логике ИИ. Именно поэтому между ИИ и эвристикой нет реальной конкуренции. Однако великие успехи ИИ в шахматах и го основаны не на этой программе психологического ИИ, а скорее на грубой вычислительной силе. Вспомните из главы 2, что психологический ИИ анализирует эвристики, которые используют люди, и внедряет их в алгоритмы, чтобы сделать ИИ умнее. Сегодня большинство алгоритмов машинного обучения пытаются решать задачи, не используя никаких знаний об эволюционировавшем мозге. Хотя сложные сети и называются "глубокими искусственными нейронными сетями", они имеют мало общего с человеческим интеллектом и, по сути, являются сложными рекурсивными версиями нелинейных множественных регрессий. Таким образом, противопоставление должно проводиться не между алгоритмами ИИ в целом и эвристиками, поскольку эвристики, такие как 1/N и быстрые и экономные деревья, тоже являются алгоритмами. Противопоставление проводится между сложными алгоритмами, такими как случайный лес и глубокое обучение, с одной стороны, и простыми, адаптивными алгоритмами (эвристиками) - с другой.
Принцип стабильного мира помогает прояснить соотношение между сложными алгоритмами и эвристикой. Если проблема хорошо определена и стабильна во времени, то сложные алгоритмы и большие данные, скорее всего, оправдают себя; если нет, то простые эвристики могут быть столь же точными или даже лучше, оставаясь при этом прозрачными и понятными. Далее мы приводим несколько примеров. В каждом из них мы противопоставляем решения, полученные с помощью психологического ИИ - то есть простых эвристик, вдохновленных психологией, - решениям, полученным с помощью сложных алгоритмов машинного обучения.
Прогнозирование покупок клиентов
В главе 2 мы упоминали эвристику "перерыва", которую опытные менеджеры используют для прогнозирования того, будет ли клиент продолжать совершать покупки. Эта эвристика, основанная на одной подсказке, классифицирует клиента как неактивного, если он не совершал покупок в течение x месяцев, а в противном случае - как активного. Согласно статье в New York Times, авиакомпании использовали эвристику хиатуса для классификации своих часто летающих пассажиров как минимум с 1980-х годов. 6 Однако большинство исследований строят и совершенствуют сложные модели, а не пытаются выяснить, как опытные менеджеры на самом деле предсказывают будущие покупки и учатся на этом.