A companion volume to Griffin’s, published at much the same time and in the same green and gilt binding, was The Science of Home Life, by A.J. Bernays, which focused on coal, coal gas, candles, soap, glass, china, earthenware, disinfectants – everything that might be contained in a Victorian home (and much of which was still contained in houses a century later).
Very different in style and content, though equally designed to awake the sense of wonder (‘The common life of man is full of Wonders, Chemical and Physiological. Most of us pass through this life without seeing or being sensible of them…’) was The Chemistry of Common Life, by J.F.W. Johnston, written in 1859. This had fascinating chapters on ‘The Odours We Enjoy’, ‘The Smells We Dislike’, ‘The Colours We Admire’, ‘The Body We Cherish’, ‘The Plants We Rear’, and no less than eight chapters on ‘The Narcotics We Indulge In.’ This introduced me not only to chemistry, but to a panorama of exotic human behaviors and cultures.
A much earlier book, of which I was able to get a battered copy for sixpence – it had no covers, and a few pages missing – was The Chemical Pocket-Book or Memoranda Chemica, written in 1803. The author was a James Parkinson, of Hoxton, whom I would reencounter in my biology days as the founder of paleontology, and then again, when I was a medical student, as the author of the famous Essay on the Shaking Palsy – which came to be known as Parkinson’s disease. But for me, at eleven, he was just the author of this delightful little pocket book of chemistry. I got a strong sense, from his book, of how chemistry was expanding, almost explosively, at the beginning of the nineteenth century; thus Parkinson spoke of ten new metals – uranium, tellurium, chromium, columbium (niobium), tantalum, cerium, palladium, rhodium, osmium, iridium – all having been discovered in the preceding few years.
It was from Griffin that I first gained a clear idea of what was meant by ‘acids’ and ‘alkalis’ and how they combined to produce ‘salts.’ Uncle Dave demonstrated the opposition of acids and bases by measuring out precise quantities of hydrochloric acid and caustic soda, which he mixed in a beaker. The mixture became extremely hot, but when it cooled, he said, ‘Now try it, drink it.’ Drink it – was he mad? But I did so, and tasted nothing but salt. ‘You see’, he explained, ‘an acid and a base come together, and they neutralize each other; they combine and make a salt.’
Could this miracle happen in reverse, I asked? Could salty water be made to produce the acid and the base all over again? ‘No’, Uncle said, ‘that would require too much energy. You saw how hot it got when the acid and base reacted – the same amount of heat would be needed to reverse the reaction. And salt’, he added, ‘is very stable. The sodium and chloride hold each other tightly, and no ordinary chemical process will break them apart. To break them apart you have to use an electric current.’
He showed me this more dramatically one day by putting a piece of sodium in a jar full of chlorine. There was a violent conflagration, the sodium caught fire and burned, weirdly, in the yellowish green chlorine – but when it was over, the result was nothing more than common salt. I had a heightened respect for salt, I think, after that, having seen the violent opposites that came together in its making and the strength of the energies, the elemental forces, that were now locked in the compound.
Here, too, Uncle Dave showed me, the proportions had to be exact: 23 parts of sodium, by weight, to 35.5 of chlorine. I was struck by these numbers, for they were already familiar: I had seen them in lists in my books; they were the ‘atomic weights’ of these elements. I had learned these numbers by rote, in the same mindless way one learns multiplication tables. But when Uncle Dave brought up these selfsame numbers in relation to the chemical combination of two elements, a slow, underground questioning started in my head.
In addition to my collection of mineral samples, I had a collection of coins, housed in a small wooden cabinet of highly polished mahogany, with doors that opened like the doors of a toy theater, revealing a series of slim trays with velvet-covered circles for the coins – some as small as a quarter-inch across (this for groats, for silver threepenny pieces, and for Maundy money, tiny silver coins given on Easter to the poor), others almost two inches across (for crowns, which I loved, and even larger than these, the gigantic twopenny pieces made at the end of the eighteenth century).
There were also stamp albums, and the stamps I most loved were those of remote islands, with pictures of local scenes and plants, stamps which could themselves provide a vicarious voyage. I adored stamps showing different minerals, and peculiar stamps of various sorts – triangular ones, imperforate ones, stamps with inverted watermarks or missing letters or advertisements printed on the back. One of my favorites was a strange Serbo-Croat stamp from 1914 which was said to show the features of the murdered Archduke Ferdinand when viewed from a certain angle. But the collection closest to my heart was a singular collection of bus tickets. Whenever one took a bus in London in those days, one got a colored oblong of cardboard bearing letters and numbers. It was after getting an O 16 and an S 32 (my initials, also the symbols of oxygen and sulphur – and added to these, by a happy chance, their atomic weights, too) that I decided to make a collection of ‘chemical’ bus tickets, to see how many of the ninety-two elements I could get. I was extraordinarily lucky, so it seemed to me (though there was nothing but chance involved), for the tickets accrued rapidly, and I soon had a whole collection (W 184, tungsten, gave me particular pleasure, partly because it provided my missing middle initial). There were, to be sure, some difficult ones: chlorine, irritatingly, had an atomic weight of 35.5, which was not a whole number, but, undismayed, I collected a CI 355 and inked in a tiny decimal point. The single letters were easier to get – I soon had an H 1, a B 11, a C 12, an N 14, and an F 19, besides the original O 16. When I realized that atomic numbers were even more important than atomic weights, I started to collect these as well. Eventually, I had all the known elements, from H 1 to U 92. Every element became indissolubly associated with a number for me, and every number with an element. I loved carrying my little collection of chemical bus tickets with me; it gave me the sense that I had, in the space of a single cubic inch, the whole universe, its building blocks, in my pocket.
8. Stinks and Bangs
Attracted by the sounds and flashes and smells coming from my lab, David and Marcus, now medical students, sometimes joined me in experiments – the nine- and ten-year age differences between us hardly mattered at these times. On one occasion, as I was experimenting with hydrogen and oxygen, there was a loud explosion, and an almost invisible sheet of flame, which blew off Marcus’s eyebrows completely. But Marcus took this in good part, and he and David often suggested other experiments.
We mixed potassium perchlorate with sugar, put it on the back step, and banged it with a hammer. This caused a most satisfying explosion. It was trickier with nitrogen tri-iodide, easily made by adding concentrated ammonia to iodine, catching the nitrogen tri-iodide on filter paper, and drying it with ether. Nitrogen tri-iodide was incredibly touch-sensitive; one had only to touch it with a stick – a long stick (or even a feather) – and it would explode with surprising violence.
We made a ‘volcano’ together with ammonium dichromate, setting fire to a pyramid of the orange crystals, which then flamed, furiously, becoming red-hot, throwing off showers of sparks in all directions, and swelling portentously, like a miniature volcano erupting. Finally, when it had died down, there was, in place of the neat pyramid of crystals, a huge fluffy pile of dark green chromic oxide.