1.12. Резюме
В листинге 1.1 показан полностью рабочий, хотя и простой, клиент TCP, который получает текущее время и дату с заданного сервера. В листинге 1.5 представлена полная версия сервера. На этих примерах вводятся многие термины и понятия, которые далее рассматриваются более подробно. Наш клиент был зависим от протокола, и мы изменили его, чтобы он использовал IPv6. Но при этом мы получили всего лишь еще одну зависимую от протокола программу. В главе 11 мы разработаем некоторые функции, которые позволят нам написать код, не зависимый от протокола. Это важно, поскольку в Интернете начинает использоваться протокол IPv6. По ходу книги мы будем использовать функции-обертки, созданные в разделе 1.4, для уменьшения размера нашего кода, хотя по-прежнему каждый вызов функции будет проходить проверку на предмет возвращения ошибки. Все имена наших функций-оберток начинаются с заглавной буквы.
Третья версия единой спецификации Unix, известная также под несколькими другими названиями (мы называем ее просто «Спецификация POSIX»), представляет собой результат слияния двух стандартов, осуществленного The Austin Group.
Читатели, которых интересует история сетевого программирования в Unix, должны изучить прежде всего историю развития Unix, а история TCP/IP и Интернета представлена в книге [106].
Упражнения
1. Проделайте все шаги, описанные в конце раздела 1.9, чтобы получить информацию о топологии вашей сети.
2. Отыщите исходный код для примеров в тексте (см. предисловие). Откомпилируйте и протестируйте клиент времени и даты, представленный в листинге 1.1. Запустите программу несколько раз, задавая каждый раз различные IP- адреса в командной строке.
3. Замените первый аргумент функции socket
, представленной в листинге 1.1, на 9999. Откомпилируйте и запустите программу. Что происходит? Найдите значение errno
, соответствующее выданной ошибке. Как вы можете получить дополнительную информацию по этой ошибке?
4. Измените листинг 1.1: поместите в цикл while
счетчик, который будет считать, сколько раз функция read
возвращает значение, большее нуля. Выведите значение счетчика перед завершением. Откомпилируйте и запустите новую программу-клиент.
5. Измените листинг 1.5 следующим образом. Сначала поменяйте номер порта, заданный функции sin_port
, с 13 на 9999. Затем замените один вызов функции write
на циклический, при котором функция write
вызывается для каждого байта результирующей строки. Откомпилируйте полученный сервер и запустите его в фоновом режиме. Затем измените клиент из предыдущего упражнения (в котором выводится счетчик перед завершением программы), изменив номер порта, заданный функции sin_port
, с 13 на 9999. Запустите этот клиент, задав в качестве аргумента командной строки IP-адрес узла, на котором работает измененный сервер. Какое значение клиентского счетчика будет напечатано? Если это возможно, попробуйте также запустить клиент и сервер на разных узлах.
Глава 2
Транспортный уровень: TCP, UDP и SCRIPT
2.1. Введение
В этой главе приводится обзор протоколов семейства TCP/IP, которые используются в примерах на всем протяжении книги. Наша цель — как можно подробнее описать эти протоколы с точки зрения сетевого программирования, чтобы понять, как их использовать, а также дать ссылки на более подробные описания фактического устройства, реализации и истории протоколов.
В данной главе речь пойдет о транспортном уровне: протоколах TCP, UDP и протоколе управления передачей потоков (Stream Control Transmission Protocol, SCRIPT). Большинство приложений, построенных по архитектуре клиент-сервер, используют либо TCP, либо UDP. Протоколы транспортного уровня, в свою очередь, используют протокол сетевого уровня IP — либо IPv4, либо IPv6. Хотя и возможно использовать IPv4 или IPv6 непосредственно, минуя транспортный уровень, эта технология (символьные сокеты) используется гораздо реже. Поэтому мы даем более подробное описание IPv4 и IPv6 наряду с ICMPv4 и ICMPv6 в приложении А.
UDP представляет собой простой и ненадежный протокол передачи дейтаграмм, в то время как TCP является сложным и надежным потоковым протоколом. SCRIPT тоже обеспечивает надежность передачи, как и TCP, но помимо этого он позволяет задавать границы сообщений, обеспечивает поддержку множественной адресации на транспортном уровне, а также минимизирует блокирование линии в начале передачи. Нужно понимать, какие сервисы предоставляют приложениям транспортные протоколы, какие задачи решаются протоколами, а что необходимо реализовывать в приложении.
Есть ряд свойств TCP, которые при должном понимании упрощают написание надежных клиентов и серверов. Знание этих особенностей облегчит нам отладку наших клиентов и серверов с использованием общеупотребительных средств, таких как netstat
. В этой главе мы коснемся различных тем, попадающих в эту категорию: трехэтапное рукопожатие TCP, последовательность прерывания соединения TCP, состояние TCP TIME_WAIT, четырехэтапное рукопожатие и завершение соединения SCRIPT, буферизация TCP, UDP и SCRIPT уровнем сокетов и так далее.
2.2. Обзор протоколов TCP/IP
Хотя набор протоколов и называется «TCP/IP», это семейство состоит не только из собственно протоколов TCP и IP. На рис. 2.1 представлен обзор этих протоколов.
Рис. 2.1. Обзор протоколов семейства TCP/IP
На этом рисунке представлены и IPv4, и IPv6. Если рассматривать этот рисунок справа налево, то пять приложений справа используют IPv6. О константе AF_INET6
и структуре sockaddr_in6
мы говорим в главе 3. Следующие шесть приложений используют IPv4.
Приложение, находящееся в самой левой части рисунка, tcpdump
, соединяется непосредственно с канальным уровнем, используя либо BPF (BSD Packet Filter — фильтр пакетов BSD), либо DLPI (Data Link Provider Interface — интерфейс канального уровня). Мы обозначили штриховую горизонтальную линию под девятью приложениями (интерфейс) как API, что обычно соответствует сокетам или XTI. Интерфейс и к BPF, и к DLPI не использует сокетов или XTI.
Здесь существует исключение, описанное нами в главе 25: Linux предоставляет доступ к канальному уровню при помощи специального типа сокета, называемого SOCK PACKET.
На рис. 2.1 мы также отмечаем, что программа traceroute
использует два сокета: один для IP, другой для ICMP. В главе 25 мы создадим версии IPv4 и IPv6 утилит ping
и traceroute
.
А сейчас мы опишем каждый из протоколов, представленных на рисунке.
■ Протокол Интернета версии 4. IPv4 (Internet Protocol, version 4), который мы часто обозначаем просто как IP, был «рабочей лошадкой» набора протоколов Интернета с начала 80-х. Он использует 32-разрядную адресацию (см. раздел А.4). IPv4 предоставляет сервис доставки пакетов для протоколов TCP, UDP, SCRIPT, ICMP и IGMP.
■ Протокол Интернета версии 6. IPv6 (Internet Protocol, version 6) был разработан в середине 90-х как замена протокола IPv4. Главным изменением является увеличение размера адреса, в случае IPv6 равного 128 бит (см. раздел А.5) для работы с бурно развивавшимся в 90-е годы Интернетом. IPv6 предоставляет сервис доставки пакетов для протоколов TCP, UDP, SCRIPT и ICMPv6.