Выбрать главу

20  exit(0);

21 }

Мы помещаем двухбайтовое значение 0x0102 в переменную типа short (короткое целое) и проверяем значения двух байтов этой переменной: с[0] (адрес А на рис. 3.4) и c[1] (адрес А + 1 на рис. 3.4), чтобы определить порядок байтов.

Константа CPU_VENDOR_OS определяется программой GNU (аббревиатура «GNU» раскрывается рекурсивно — GNU's Not Unix) autoconf в процессе конфигурации, необходимой для выполнения программ из этой книги. В этой константе хранится тип центрального процессора, а также сведения о производителе и реализации операционной системы. Ниже представлены некоторые примеры вывода этой программы при запуске ее в различных системах (см. рис. 1.7).

freebsd4 % byteorder

i386-unknown-freebsd4.8: little-endian

macosx % byteorder

powerpc-apple-darwin6.6: big-endian

freebsd5 % byteorder

sparc64-unknown-freebsd5.1: big-endian

aix % byteorder

powerpc-ibm-aix5.1.0.0: big-endian

hpux % byteorder

hppa1.1-hp-ux11 11: big-endian

linux % byteorder

i586-pc-linux-gnu: little-endian

solaris % byteorder

sparc-sun-solaris2.9: big-endian

Все, что было сказано об определении порядка байтов 16-разрядного целого числа, конечно, справедливо и в отношении 32-разрядного целого.

ПРИМЕЧАНИЕ

Существуют системы, в которых возможен переход от прямого к обратному порядку байтов либо при перезапуске системы (MIPS 2000), либо в любой момент выполнения программы (Intel i860).

Разработчикам сетевых приложений приходится обрабатывать различия в определении порядка байтов, поскольку в сетевых протоколах используется сетевой порядок байтов (network byte order). Например, в сегменте TCP есть 16- разрядный номер порта и 32-разрядный адрес IPv4. Стеки отправляющего и принимающего протоколов должны согласовывать порядок, в котором передаются байты этих многобайтовых полей. Протоколы Интернета используют обратный порядок байтов.

Теоретически реализация Unix могла бы хранить поля структуры адреса сокета в порядке байтов узла, а затем выполнять необходимые преобразования при перемещении полей в заголовки протоколов и обратно, позволяя нам не беспокоиться об этом. Но исторически и с точки зрения POSIX определяется, что для некоторых полей в структуре адреса сокета порядок байтов всегда должен быть сетевым. Поэтому наша задача — выполнить преобразование из порядка байтов узла в сетевой порядок и обратно. Для этого мы используем следующие четыре функции:

#include <netinet/in.h>

uint16_t htons(uint16_t host16bitvalue);

uint32_t htonl(uint32_t host32bitvalue);

Обе функции возвращают значение, записанное в сетевом порядке байтов

uint16_t ntohs(uint16_t net16bitvalue);

uint32_t ntohl(uint32_t net32bitvalue);

Обе функции возвращают значение, записанное в порядке байтов узла

В названиях этих функций h обозначает узел, n обозначает сеть, s — тип short, l — тип long. Термины short и long являются наследием времен реализации 4.2BSD Digital VAX. Следует воспринимать s как 16-разрядное значение (например, номер порта TCP или UDP), а l — как 32-разрядное значение (например, адрес IPv4). В самом деле, в 64-разрядной системе Digital Alpha длинное целое занимает 64 разряда, а функции htonl и ntohl оперируют 32-разрядными значениями (несмотря на то, что используют тип long).

Используя эти функции, мы можем не беспокоиться о реальном порядке байтов на узле и в сети. Для преобразования порядка байтов в конкретном значении следует вызвать соответствующую функцию. В системах с таким же порядком байтов, как в протоколах Интернета (обратным), эти четыре функции обычно определяются как пустой макрос.

Мы еще вернемся к проблеме определения порядка байтов, обсуждая данные, содержащиеся в сетевом пакете, и сравнивая их с полями в заголовках протокола, в разделе 5.18 и упражнении 5.8.

Мы до сих пор не определили термин байт. Его мы будем использовать для обозначения 8 бит, поскольку практически все современные компьютерные системы используют 8-битовые байты. Однако в большинстве стандартов Интернета для обозначения 8 бит используется термин октет. Началось это на заре TCP/IP, поскольку большая часть работы выполнялась в системах типа DEC-10, в которых не применялись 8-битовые байты. Еще одно важное соглашение, принятое в стандартах Интернета, связано с порядком битов. Во многих стандартах вы можете увидеть «изображения» пакетов, подобные приведенному ниже (это первые 32 разряда заголовка IPv4 из RFC 791):

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service|           Total Length          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

В этом примере приведены четыре байта в том порядке, в котором они передаются по проводам. Крайний слева бит является наиболее значимым. Однако нумерация начинается с нуля, который соответствует как раз наиболее значимому биту. Вам необходимо получше ознакомиться с этой записью, чтобы не испытывать трудностей при чтении описаний протоколов в RFC.

ПРИМЕЧАНИЕ

Типичной ошибкой среди программистов сетевых приложений начала 80-х, разрабатывающих код на рабочих станциях Sun (Motorola 68000 с обратным порядком байтов), было забыть вызвать одну из указанных четырех функций. На этих рабочих станциях программы работали нормально, но при переходе на машины с прямым порядком байтов они переставали работать.

3.5. Функции управления байтами

Существует две группы функций, работающих с многобайтовыми полями без преобразования данных и без интерпретации их в качестве строк языка С с завершающим нулем. Они необходимы нам при обработке структур адресов сокетов, поскольку такие поля этих структур, как IP-адреса, могут содержать нулевые байты, но при этом не являются строками С. Строки с завершающим нулем обрабатываются функциями языка С, имена которых начинаются с аббревиатуры str. Эти функции подключаются с помощью файла <string.h>.

Первая группа функций, названия которых начинаются с b (от слова «byte» — «байт»), взяты из реализации 4.2BSD и все еще предоставляются практически любой системой, поддерживающей функции сокетов. Вторая группа функций, названия которых начинаются с mem (от слова «memory» — память), взяты из стандарта ANSI С и доступны в любой системе, обеспечивающей поддержку библиотеки ANSI С.

Сначала мы представим функции, которые берут начало от реализации Беркли, хотя в книге мы будем использовать только одну из них — bzero. (Дело в том, что она имеет только два аргумента и ее проще запомнить, чем функцию memset с тремя аргументами, как объяснялось в разделе 1.2.) Две другие функции, bcopy и bcmp, могут встретиться вам в существующих приложениях.