Заметим, что решение уравнения (1) мы получили, исходя из неизменного, постоянного значения параметра H. Из этого же условия можно получить решение и в более общем, но несколько завуалированном виде для переменного значения параметра.
Для этого мы подменим величину Ht в экспоненте другой, интегральной величиной:
Правильность уравнения контролируем по размерности величин: слева и справа – они тождественно безразмерные. Величина t1 слева обязательно равна верхнему пределу интегрирования. Смысл интеграла состоит в том, что на каждом интервале времени dt новое расширение испытывает пространство, уже расширившееся на предыдущих этапах.
Математически здесь произведение Ht, как и раньше, является константой для наблюдаемого (!) момента (интервала) времени – t1. Величина этой безразмерной константы определяется, по существу, интегральным значением реального параметра Хаббла, изменяющегося на интервале времени от начального t0 до конечного t1. В частности, для всего времени существования Вселенной, то есть, принимая t0 = 0, t14 = 14, и современного постоянного значения параметра H0 = 1/t14, мы получим:
Подставляем в уравнение (3) и находим, что удалённость всех галактик во Вселенной за время её существования возросла примерно в 3 раза:
Это уравнение относится к любой единичной галактике во Вселенной. Например, галактика, находившаяся в начале расширения на удалении ~ 14 млрд. световых лет от Земли, сегодня находится на удалении ~ 42 млрд. световых лет.
Есть и ещё один подход к записи уравнения движения (4) (в терминах масштабного фактора):
В этом случае параметр H(x) не является чётко выраженной функцией времени, а значение интеграла после его вычисления просто обозначается, именуется в дальнейшем как функция H(t). Вид функции H(t) отличается от вида функции H(x), именовать которую параметром Хаббла вряд ли уместно.
В космологии вместо реальных, физических скорости и удалённости используются соответствующие наблюдательные параметры – яркость удаленной галактики и её красное смещение. Яркость является математически тождественной величиной для удалённости. Определяя яркость стандартной свечи – сверхновой типа Ia, получают точное значение её удалённости. Чем ярче звезда, тем она ближе к нам. Второй параметр – красное смещение в точности соответствует скорости, с какой галактика удаляется от нас: чем больше смещение, тем выше скорость удаления. Иначе говоря, фактически в законе Хаббла присутствуют не скорости и расстояния, а красные смещения и яркости. Главным основанием для утверждений об ускоренном расширении Вселенной как раз и стал тот факт, что яркость дальних сверхновых типа Ia оказалась ниже, чем это должно следовать из закона Хаббла.
2. Закон Хаббла в физике Ньютона
Следует отметить, что закон Хаббла, полученный в формализме общей теории относительности, может быть выведен и средствами физики Ньютона. В интернете и в литературе нередко приводится условная иллюстрация расширения пространства на примере резинового шара с наклеенными на него монетками-галактиками. Раздувание шара приводит к тому, что расстояние между монетами возрастает, причём каждая из них может считать себя центром, от которого удаляются все остальные.
Используем эту аллегорию для получения закона Хаббла без использования уравнений общей теории относительности. Действительно, резиновый шар – вполне реальный физический объект, к которому применимы все положения физики Ньютона.
Вырежем из этого шара достаточно большого размера, диаметра узкую полосу, шнур с монетами-галактиками. Закрепим один конец полосы, то есть, формально перейдём в систему отсчёта галактики, находящейся на этом конце шнура. Галактику на противоположном конце начнём оттягивать, растягивая полосу. Запишем уравнение для постоянной или средней скорости этой движущейся галактики следующим образом:
Или инверсно: