В физике мы используем много разных типов симметрии, но у них у всех есть одна общая черта: симметрия – очень сильный объединяющий принцип, поскольку объясняет, как вещи, некогда казавшиеся очень разными, на самом деле, связанные преобразованием симметрии, составляют одно целое. Часто, однако, непросто найти правильную симметрию, чтобы упростить большие объемы данных.
Самым ошеломительным успехом принципов симметрии было, вероятно, создание кварковой модели. С момента появления ускорителей в 1930-х годах физики соударяли частицы друг с другом со все возрастающей энергией. К середине 1940-х они достигли энергий, позволяющих прощупать структуру атомного ядра, – и количество частиц стало расти. Сначала были заряженные пионы и каоны. Затем нейтральный пион и нейтральный каон, первые дельта-резонансы, частица, прозванная «лямбда», заряженные сигма-частицы, ро-частицы, омега-мезон, эта-, К*– и фи-мезон – и это было только начало. Когда Леон Ледерман спросил Энрико Ферми, что тот думает о недавнем открытии частицы, названной К20, Ферми ответил: «Молодой человек, если бы я мог упомнить названия этих частиц, я стал бы ботаником»26.
Всего физики детектировали сотни частиц, каждая из которых была нестабильной и быстро распадалась. Казалось, эти частицы никак друг с другом не связаны, и это шло вразрез с надеждой физиков на то, что законы природы будут упрощаться для более фундаментальных составляющих материи. К 1960-м годам главной исследовательской задачей стало вместить этот «зоопарк частиц» в целостную теорию.
Одним из наиболее популярных подходов в то время был следующий: попросту отказаться от желания получить объяснение и записывать свойства частиц в большую таблицу – матрицу рассеяния, или S-матрицу, – которая была самой противоположностью красоты и экономии. А затем пришел Марри Гелл-Манн. Он определил подходящие свойства частиц – названные гиперзарядом и изоспином, – и оказалось, что все частицы разделяются на симметричные группы, так называемые мультиплеты.
Позднее стало понятно: закономерности мультиплетов означают, что наблюдаемые частицы состоят из более мелких объектов, которые – по тогда еще не вполне понятным причинам – никогда не детектировались сами по себе, по отдельности. Гелл-Манн назвал эти более мелкие составляющие «кварками»[19]. Более легкие объединения – мезоны – состоят из двух кварков, а более тяжелые – барионы – из трех. (Все мезоны нестабильны. К барионам относятся нейтроны и протоны, образующие атомное ядро.)
Симметрия получающихся систем, будучи однажды раскрытой, бросается в глаза (рис. 1). Примечательно, что, когда Гелл-Манн предложил эту идею, некоторые мультиплеты все еще были неполны. И поэтому требования симметрии побудили его предсказать существование частиц, необходимых для «дозаполнения наборов», в частности существование бариона омега-минус. Позднее тот был найден со свойствами, вычисленными Гелл-Манном, и ученый в 1969 году был награжден Нобелевской премией. Красота одержала победу над неприглядностью, постмодернистским S-матричным подходом.
Рис. 1. Декуплет барионов – пример использования симметрий в теоретической физике. Гелл-Манн воспользовался его незавершенностью и предсказал существование частицы омега-минус (Ω—) в нижней вершине.
Этот случай был только началом череды успехов на счету симметрий. Принципы симметрии также управляли работой – увенчавшейся опять-таки успехом – над объединением электромагнитного взаимодействия со слабым в электрослабое взаимодействие. Аналогично сильное взаимодействие было объяснено симметрией между элементарными частицами. Теперь и теории относительности Эйнштейна – специальная и общая – могли восприниматься как выражение требований симметрии.
Таким образом, современная вера в красоту как ориентир основывается на применении этого критерия в развитии Стандартной модели и общей теории относительности. Его часто оправдывают экспериментальной полезностью: замечено, что он работает, и кажется крайне целесообразным продолжать его использовать. Гелл-Манн сам сказал, что «в фундаментальной физике красивая или элегантная теория с большей вероятностью оказывается верна, чем неэлегантная теория»[20]. Ледерман, молодой человек, спрашивавший Ферми о частице К20, также впоследствии получил Нобелевскую премию и тоже обратился в веру поборников красоты: «Мы верим, что природа лучше всего описывается уравнениями как можно более простыми, красивыми, компактными и универсальными»27.
20
Из лекции Гелл-Манна на площадке