Выбрать главу

В общей сложности получается всего лишь 41,86 бит, и тут оказывается, что емкость нашей памяти недостаточна, чтобы справиться с таким объемом! Теперь сравните эту величину с числом битов, на которое рассчитана память простого карманного калькулятора: примерно одна тысяча. А десятисантиметровый мягкий диск двойной плотности, вставленный в мой любимый «Эппл Мэк», на котором я печатаю эти фразы, способен хранить в своей памяти более 10 млн. бит информации.

В чем же действительный смысл такого подсчета? Джон Гриффит, математик из Кембриджа [27], однажды прикинул, что если бы человек непрерывно запоминал информацию со скоростью 1 бит в секунду на протяжении 70 лет жизни, то в его памяти накопилось бы 1014 бит, что приблизительно эквивалентно количеству информации, заключенному в Британской энциклопедии или в 10 000 мягких дисков; это почти столько же, сколько вмещает жесткий диск в моем компьютере. Весьма впечатляющая цифра для микро-ЭВМ, но на удивление скромная для функционирующего мозга.

Неужели объем человеческой памяти действительно меньше, чем у микрокомпьютера? Очевидно, что-то не в порядке со всеми этими расчетами. Что бы это могло быть? А вот и подсказка: хотя я не способен запомнить больше восьми цифр, вспыхивающих передо мной на экране, я однажды продемонстрировал слушателям возможности человеческой памяти, сначала показав гораздо более длинный ряд из 48 цифр, а затем повернувшись к экрану спиной и правильно назвав их:

524719382793633521255440908653225141355600362629.

Как мне удалось это, если я не выдержал испытания даже восемью цифрами? Очень просто. Этот длинный перечень был не случайным набором цифр, а последовательностью дат дней рождения, телефонных номеров и других цифровых кодов, которыми я постоянно пользуюсь и потому помню. Но я помню их не так, как компьютер безошибочно помнит цифровую информацию, и не храню их в своей памяти как непрерывную последовательность. В отличие от компьютерной человеческая память постоянно ошибается и пользуется множеством особых приемов, чтобы сохранить информацию. Для меня эта особенная, уникальная последовательность цифр имеет смысл, и он известен только мне. Этим я отличаюсь от компьютера и от того переводчика с китайского, который сидит в комнате Сирла. Я вспоминаю цифры именно по их смыслу, а не по простой последовательности. Более того, я настаиваю, что смысл, значение не синонимичны информации. Смысл подразумевает динамическое взаимодействие между мною и цифрами, это процесс, который несводим к количеству информации.

Другой пример. Вчера за обедом мне принесли меню с большим выбором блюд. Я просмотрел его, выбрал кое-что и съел. Я и сегодня помню, что обед состоял из капустного супа и отварной лососины. Информация, содержавшаяся в печатном тексте меню, преобразовалась в воспоминание об испытанных ранее вкусовых ощущениях, затем в устный заказ официанту и, наконец, в восприятие реальной пищи и ее нынешнего вкуса. Теперь, когда я рассказываю вам, что ел капустный суп и лососину, я не предлагаю вам ни меню, ни саму пищу, еще меньше я предполагаю, что вы отведаете ее; вместо этого я продолжаю трансформировать мой вчерашний опыт, переводя его в слова [28]. В каждом звене этой последовательности происходит не просто переключение с одного способа представления информации на другой, а определенная работа с этой информацией, которая приводит к ее необратимому преобразованию (я не говорю уже о работе, которую проделывает любой слушатель или читатель этого описания в ходе дальнейшей трансформации полученных сведений и интерпретации приведенных мною данных).

Таким образом, мозг работает не с информацией в компьютерном понимании этого слова, а со смыслом, или значением. А значение — это исторически формируемое понятие, оно находит выражение в процессе взаимодействия индивидуума с природной и социальной средой. Одна из трудностей изучения памяти состоит в том,, что приходится иметь дело с диалектическим феноменом. Вспоминая, мы всегда выполняем над воспоминанием какую-то работу и трансформируем его. Мы не просто извлекаем образы из хранилища и, использовав, возвращаем обратно в прежнем виде, а каждый раз пересоздаем заново. В заключительной главе мне придется более обстоятельно поговорить об этой работе по пересозданию следов памяти.

Моя критика до сих пор касалась моделей коннекционистского типа, однако сходные аргументы могут относиться и к холистическому подходу. Достаточно вспомнить контраст между относительной легкостью, с какой программисты смогли научить машины играть в шахматы на гроссмейстерском уровне, и трудностями, с которыми они столкнулись при создании робота, способного водружать оранжевую пирамиду на синий куб. И для сравнения посмотрите, как точно нетренированный человек бросает апельсиновую кожуру в мусорную корзину с расстояния в несколько метров от нее или, например, как легко обучается игре в покер. Конечно, можно создать программу для расчета вероятности взятки при выпадении карты в масть к трем уже имеющимся; но в покере мы, кроме того, имеем дело с чем-то вроде психологического соревнования, с необходимостью перехитрить соперника, что требует оценки моментов, не поддающихся рациональному познанию; а с такой оценкой, я уверен, не сможет хорошо справиться никакая машина. Можно еще получить какое-то удовольствие, играя с компьютером в шахматы, но при игре в покер против программы это исключено. Может быть, надо заменить тест Тьюринга или Сирла покерным тестом?