Распределение Ферми — Дирака определяет проводимость металлов, что было доказано Зоммерфельдом — и самим Паули в 1927 году — с помощью анализа свободных электронов. Однако первым его применением мы обязаны британскому физику и астроному Ральфу Говарду Фаулеру, который в 1926 году успешно применил его в астрофизике. В частности, Фаулер доказал, что газ со свободными электронами, находящийся в белом карлике, является вырожденным газом Ферми.
Распределение Ферми — Дирака: вариация ni, от коэффициента εi/μ. Форма распределения Ферми меняется в зависимости от произведения kBТ. При низких температурах распределение Ферми — Дирака приближается к ступенчатой функции или к единичной функции Хевисайда, кусочнопостоянной математической функции, значение которой (0 или 1) зависит от того, положительное или отрицательное х.
Все известные на данный момент частицы, согласно принципу исключения Паули, делятся на фермионы и бозоны. Они приведены в таблице на этой странице, а на следующей — указано, когда была выдвинута гипотеза об их существовании и когда они были открыты экспериментально.
Два фермиона не могут оставаться в одинаковом квантовом состоянии, то есть иметь одинаковые квантовые числа. Как видно из таблицы, фермионы имеют спин Vi и антисимметричную волновую функцию. Кроме того, согласно принципу исключения Паули, два электрона могут находиться на одном и том же атомном уровне (быть спаренными), только если значения их спинов противоположны друг другу, то есть если они различаются хотя бы спиновым числом.
Все фермионы подчиняются статистике Ферми — Дирака и делятся на две большие группы: кварки — частицы атомного ядра (протоны и нейтроны), участвующие в сильном ядерном взаимодействии, и лептоны, среди которых электроны и нейтрино с электрослабым взаимодействием. Бозоны, находящиеся в симметричных квантовых состояниях и обладающие целым спином, не подчиняются принципу Паули, то есть в одном квантовом состоянии может быть более одного бозона. По этой причине возможен, например, эффект лазера, когда множество фотонов переходит с одного энергетического уровня на другой с таким же квантовым числом. Бозоны следуют статистике Бозе — Эйнштейна и являются носителями сил, с помощью которых частицы взаимодействуют друг с другом.
Все частицы материи были названы фермионами в честь Энрико Ферми, который первым понял статистические принципы функционирования квантовой Вселенной.
Частица | Гипотеза | Открытие |
u-кварк | Гелл-Манн и Цвейг (1964) | Лаборатория SLAC (1967) |
d-кварк | Гелл-Манн и Цвейг (1964) | Лаборатория SLAC (1967) |
с-кварк | Глэшоу, Илиопулос, Майяни (1970) | Рихтер и другие сотрудники лаборатории SLAC и Тинг и сотрудники лаборатории BNL (1974) |
s-кварк | Гелл-Манн и Цвейг (1964) | Лаборатория SLAC (1967) |
t-кварк | Кобаяси и Масукава (1973) | Коллаборации CDF и DO Фермилаб (1995) |
b-кварк | Кобаяси и Масукава (1973) | Ледерман и сотрудники лаборатории Фермилаб (1977) |
Электронное нейтрино | Паули (1930) | Коуэн и Райнес (1956) |
Электрон | Ламинг (1838) / Стони (1874) | Томсон (1897) |
Мюонное нейтрино | Саката и Иноуэ (1946) | Ледерман, Шварц и Стейнбергер (1962) |
Мюон | — | Андерсон и Неддермейер (1936) |
Тау-нейтрино | Перл и сотрудники лаборатории SLAC (1974) | Коллаборация DONUT / Лаборатория Фермилаб (2000) |
Тау-лептон | — | Перл и сотрудники лаборатории SLAC (1974) |
Фотон | Планк (1900) / Эйнштейн (1905) | Рентген / Иван Пулюй (1896) |
Глюон | Гелл-Манн (1962) | Исследовательский центр DESY / детектор PLUTO (1978) |
Слабое взаимодействие Z° | Глэшоу. Вайнберг, Салам (1968) | Детекторы UA1 / UA2 (1983) |
Слабое взаимодействие W+/- | Глэшоу, Вайнберг, Салам (1968) | Детекторы UA1 / UA2 (1983) |
Бозон Хиггса | Хиггс (1964) | ЦЕРН-БАК (Большой адронный коллайдер) (2012) |