В данном примере мы получаем один позитрон и один нейтрино. Тот факт, что для формирования плавящихся материалов необходимы реакции слабого взаимодействия, гарантирует, что водород Солнца расходуется медленнее, регулируя солнечную активность и увеличивая продолжительность жизни звезды. Ферми не упускал из виду связь своего открытия с космической радиацией. В 1933 году он воспользовался тем, что в Риме находился Бруно Росси, прославившийся разработкой цикла для измерения совпадений в спаренных счетчиках Гейгера и выявления таким образом траекторий частиц, и написал с ним совместную работу «Действие магнитного поля Земли на проникающее излучение». В этой статье объяснялось геомагнитное воздействие широты и долготы на космическую радиацию, достигающую Земли. Ферми был очень доволен результатами в области изучения слабого взаимодействия и считал их своими главными достижениями, достойными того, чтобы остаться в памяти потомков. На основе этой работы японский физик Хидэки Юкава (1907-1981) в 1935 году сформулировал свою теорию мезонов, и с нее началась революция в ядерной физике и физике элементарных частиц.
В январе 1934 года, бомбардируя альфа-частицами ядра бора и алюминия, Ирен Кюри и Фредерик Жолио получили первые искусственные радиоактивные изотопы. Ирен шла по стопам своих родителей, Пьера и Марии Кюри, которые детально изучили поведение естественных радиоактивных изотопов радия и полония и более тяжелых элементов, таких как уран и торий.
Легкие ядра, подвергавшиеся бомбардировке альфа-частицами, довольно быстро излучали позитроны, демонстрируя, таким образом, хорошие радиоактивные свойства, в то время как ядра более тяжелых атомов подобной наведенной радиации не проявляли. Альфа-частицы, как и положительные ионы гелия, не действовали на тяжелые ядра из-за повышенного содержания в них электронов, которые уменьшали воздействие на ядра вследствие электромагнитного отталкивания. Процесс усложнялся и за счет повышенного отталкивания тяжелых ядер.
В начале марта 1934 года в руки Ферми попала статья Кюри и Жолио. Он сразу предложил Разетти провести те же эксперименты, но не с альфа-частицами, а с нейтронами, чтобы избежать электромагнитных трудностей. Разетти разработал несколько источников нейтронов, полония и бериллия, а также еще один, более мощный, радона и бериллия. Он собирался ехать в отпуск, но Ферми не мог тянуть с началом опытов. В отсутствие Разетти ему пришлось самому сконструировать счетчик Гейгера (с чем он блестяще справился) и быстро получить радон для нейтронного источника. Надо сказать, что Ферми повезло: у профессора Джулио Чезаре Трабакки, директора хорошо оснащенных лабораторий итальянской санитарной службы, был радий и необходимые приборы для извлечения из него радона по методу Марии Кюри. Радон — это газ, образующийся при естественном альфа-распаде радия, как доказала Мария Кюри. Если смешать его с пылью бериллия, то порожденные альфа-частицы провоцируют выброс нейтронов.
Если результат подтверждает гипотезу, значит, вы сделали измерение. Если результат противоречит гипотезе, вы сделали открытие.
Энрико Ферми
Ферми начал систематическую бомбардировку в порядке периодической таблицы, взяв водород, литий, бор, углерод и азот. Результаты были отрицательными. Ученый немного упал духом: полученные данные заставили его сомневаться.
Тогда он решил попробовать новые элементы. Ферми пропустил кислород, потому что его бомбардировку надо было проводить в воде, и, бомбардируя фтор, сумел активировать элемент. Отреагировал счетчик Гейгера и на алюминий. Ферми отправил 25 марта 1934 года в журнал La ticerca sdentifica статью «Радиоактивность, наведенная нейтронной бомбардировкой. I», чтобы ее как можно скорее опубликовали.
В статье ученый давал интерпретацию полученных результатов для каждого элемента. Римская цифра I означала, что за этой статьей должны были последовать и другие из этой же серии, что и произошло.
Ферми понимал, что сила современной науки кроется в совместной работе. Он тут же подключил к новым исследованиям Амальди и Сегре. Помощники с энтузиазмом отнеслись к первым же результатам и предложили химику Оскару Д’Агостино присоединиться к ним (он как раз вернулся в Рим после работы в лаборатории Жолио-Кюри). Ферми отправил Разетти в Марокко телеграмму, в которой объяснял ситуацию и спрашивал, как приступать к сбору материала (речь шла обо всех элементах периодической таблицы!). Готовился поистине обширный эксперимент.
Команда исследовала более 60 элементов и открыла 40 новых радиоактивных изотопов. И это не все. При бомбардировке ядер более тяжелых элементов, тория (Z = 90) и урана (Z = 92), ученые обнаружили два новых элемента с атомным номером, превышающим 92. В статье Possible Production of Elements of Atomic Number Higher than 92 («Возможное образование элементов с атомным номером выше 92»), опубликованной в журнале Nature, элементы были названы гесперий и аузоний. Количество полученных данных и открытых радиоактивных элементов поразило группу исследователей. Возможно, поэтому ученые не обратили должного внимания на блестящую идею немецкого физика и химика Иды Ноддак (1896-1978) о возможности деления ядер урана на изотопы уже известных атомов. Время деления ядра еще не пришло.
В мае 1934 года Ферми предложил создавать искусственным образом несуществующие на Земле элементы, например элемент 93, который он, как ему казалось, получил в ходе некоторых экспериментов по бомбардировке урана. Корбино, выступая на конференции перед королем Виктором Имануилом III, рассказал о достижениях научной группы Ферми и обрисовал перспективу создания новых элементов. Фашистская пресса тут же подхватила эти слова, воздавая похвалы ученым и подчеркивая огромный вклад итальянской науки в развитие человечества — науки, «поощряемой фашистским режимом», и говоря об открытии элемента-93 как о свершившемся факте. Ферми очень рассердился на Корбино. Он не хотел никакой рекламы, особенно если речь шла о лжи мировому сообществу. Слишком много сил он потратил на то, чтобы заслужить репутацию, и ученый не хотел ее разрушить. Корбино понял сложность положения, однако было поздно: из скандальной европейской прессы новость докатилась до The New York Times.
Осенью 1934 года Ферми поручил Амальди и Бруно Понтекорво подсчитать количество радиации, излучаемой каждым бомбардируемым элементом. Амальди тем летом был вместе с Сегре в Кембридже и опубликовал там в журнале Proceedings of the Royal Society анализ на тему «Радиоактивность, наведенная нейтронной бомбардировкой». Амальди знал, что условия эксперимента оказывали значительное влияние на количество испускаемой радиации.
Между 18 и 22 октября того же года Амальди и Понтекорво изучили поглощающие свойства таких материалов, как свинец, в зависимости от величины вещества и условий эксперимента. В свинцовую коробку они поставили цилиндр из серебра, а счетчик Гейгера разместили позади источника нейтронов радона-бериллия (см. рисунок на следующей странице). Ученые провели несколько опытов с цилиндрами одинаковых размеров, но из разных материалов, меняя их положение в коробке. Измеряемая радиоактивность менялась в зависимости от положения цилиндров, и ученые не понимали причин этого.
Амальди и Понтекорво поделились трудностями с Ферми и Разетти. Те изменили эксперименты так, чтобы устранить возможные причины ошибок: Разетти был уверен (и совершенно справедливо), что для уменьшения статистических ошибок нужна большая точность. Амальди вместе с Понтекорво поняли, что радиоактивность менялась в зависимости от того, проводились опыты на деревянном или мраморном столе. Тогда Ферми предложил проделать все то же самое вне свинцовой коробки: радиоактивность менялась даже при приближении металлических или других предметов. Тогда он посоветовал поместить между нейтронным источником и серебряным цилиндром различные материалы. Несколько дней все «ребята с улицы Панисперна» участвовали в опытах.