Выбрать главу

Когда же появились горячие источники и какие события способствовали этому?

В первой главе мы уже показали, что в конце верхнего плейстоцена и вплоть до голоцена (10 тыс. лет назад) в районе Узон-Гейзерной депрессии происходили интенсивные внедрения экструзий кислого состава. В кальдере Узон в это время сформировалась экструзия горы Белой. Весь район испытал колоссальные тектонические движения. Возникли новые тектонические разломы. По одному из них заложилось русло реки Шумной, спустившей Узонское озеро. Вот с этим-то этапом проявления кислого вулканизма и тектонических движений геологи и связывают возникновение гидротермальной деятельности в описываемом районе.

Таким образом, несмотря на то что как геологическая структура кальдера Узон возникла порядка 100 тыс. лет назад, началом проявления гидротермальной системы в ней следует считать лишь период завершения кислого вулканизма, т. е. возраст горячих источников и гейзеров может быть не более 10–30 тыс. лет. Об их «молодости» говорят также следующие факты. Вышеупомянутые кислые экструзии, слагающие сопку Озерную, гору Белую и др., имеют как бы сглаженные склоны, уплощенные вершины — рельеф, характерный для ледниковых образований. Есть представление, что эти экструзии прорвались в конце верхнеплейстоценового оледенения, возможно даже имели место подледные излияния. На бортах Узонской кальдеры также хорошо заметны типичные ледниковые кары — углубления в виде ниш, прорезанные в склоне горы ледником. В низине, на север и запад от озера Центрального, отчетливо видны однообразно ориентированные гряды низких холмов с пологой северной и крутой южной сторонами. Это также обработанные ледником останцы более плотных агломератовых туфов, отложившихся в озерном бассейне. Более рыхлые озерные отложения были выпаханы льдом. Их многочисленные валуны сейчас встречаются на юго-западном берегу озера Центрального. Но эти обломки не имеют следов воздействия горячих растворов. Также не обнаружено и характерных следов гидротермальной проработки в отложениях пеплово-пемзовых туфов, прорванных кислой экструзией горы Белой. Только в обнажениях по первому левому притоку реки Шумной встречаются маломощные зоны плотных окварцованных среднезернистых туфов, окварцевание которых связывается с кратковременным воздействием на породы растворов с высоким содержанием кремнезема. Предполагается, что внедрение экструзии Белой могло происходить непосредственно в озерный бассейн. Породы экструзии Белой интенсивно изменены в процессе газо-гидротермального воздействия на них высокотемпературных фумарол.

Эти факты позволяют говорить о том, что собственно гидротермальная система, аналогичная современной, с современным составом термальных вод, проявилась в кальдере Узон по ранее конца ледникового периода, т. е. 10–30 тыс. лет назад.

МНОГО ЛИ ТЕПЛА В КАЛЬДЕРЕ

На закате или рано утром, когда воздух еще не прогрет, Узонское термальное поле представляет собой особенно красочное зрелище: от крупных грифонов высоко вздымаются плотные столбы пара, а вблизи поверхности, как подлесок, тянутся кверху тысячи мелких струек (фото 24). Парит и вся термальная площадка на протяжении до 1,5 км. Сколько тепла уходит в воздух! По расчетам ученых, основанных на реальных замерах теплоотдачи с различных поверхностей источников и грунта, суммарный вынос тепла Узонской тепловой системой составляет порядка 70 тыс. ккал/с.

Как видно из табл. 2, основная часть тепла (более 80 %) на Узоне выносится через поверхность крупных и мелких термальных водоемов. Вынос тепла термальными ручьями составляет всего порядка 10 %. Суммарный расход воды с термальных полей, включающий сток и испарение, — 170 кг/с. Здесь не мог быть учтен вынос тепла К скрытым, подземным стоком. В то ясе время в трещиноватых породах по величине он может быть равен поверхностному стоку. Поэтому приводимую в таблице величину суммарного выноса тепла (64 тыс. ккал/с), по-видимому, нужно считать нижним пределом тепловой мощности.

По представлениям гидрогеолога В. В. Аверьева и теплофизика Г. Н. Ковалева Узон является одной из крупнейших гидротермальных систем на Камчатке, а вместе о расположенной рядом Долиной Гейзеров — самой крупной на Камчатке и одной из самых мощных в мире. Для сравнения можно привести Паужетскую гидротермальную систему на юго-западе Камчатки, где при выносе тепла в два раза меньшем, чем на Узоне, перегретого пара хватает для работы электростанции мощностью 10 тыс. квт. В перспективе — строительство станции на 25 тыс. квт. Такие гидротермальные системы, как Узонская и Паужетская, давно уже используются. На подаем ном тепле сейчас работают несколько десятков геотермальных электростанций, вырабатывающих более 6 млрд. квт/ч электроэнергии в год. Причем электроэнергия, вырабатываемая за счет подземного тепла. Земли, является самой дешевой из существующих энергоисточников. Интересно отметить, что запасы вод в гидротермальных системах практически неисчерпаемы. Возраст таких систем, как правило, не менее 10 тыс. лет, а есть Системы, действующие миллионы лет, и все это время на поверхность изливались горячие воды, выбрасывалась в воздух колоссальная энергия.

МОДЕЛЬ ОБРАЗОВАНИЯ РУДЫ

Материалы, полученные при изучении переноса рудных компонентов, особенностей разгрузки минеральных источников и характера отложения сульфидов мышьяка и сурьмы на Узонском термальном поле, позволяют построить пока еще приближенную модель сульфидной рудообразующей системы. Прежде всего мы принимаем два положения, необходимые для наших построений: 1) гидротермальпые растворы на глубине, в зоне транспортировки рудного вещества, имеют щелочную реакцию;

2) сероводород и продукты его диссоциации имеют глубинное происхождение и переносятся по общим с гидротермами путям фильтрации. Оба положения находят на Узоне подтверждение. Первое — реальными замерами pH в зонах выхода наиболее высокотемпературных хлоридио-натриевых растворов с высоким содержанием мышьяка и сурьмы; второе — наблюдениями за спецификой отложения сульфидов железа, меди и мышьяка в разрезе термального поля. Так, по ручным скважинам отмечается сквозное развитие пирита от поверхности до глубины 17 м (максимальная глубина скважины). Но в то же время глубже 2,5 м встречается ассоциация пирита с пирротином, с отчетливыми следами замещения последнего пиритом. Повсеместно с уменьшением глубины наблюдается смена реальгара аурипигментом. А в глубоких горизонтах разреза Фумарольного озера обнаружен парагенезис высокосернистого сульфида — ковеллина с пиритом. Таким образом, сульфиды развиты в профиле минералообразования сверху донизу, но с падением температуры преобладают более высокосернистые соединения, что свидетельствует о контроле сульфидообразования растворимостью и степенью диссоциации сероводорода, поступающего совместно с растворами из глубины. Несомненно глубинное происхождение сероводорода, занимающего до 5,5 объемн. % в газовых струях источников, где он находится с углекислым газом. И. А. Меняйлов отмечает обогащение СО2 изотопом 13С, что свидетельствует об эндогенном происхождении газа. Наличие самородной серы практически во всех минерализованных зонах указывает на то, что окисление глубинных щелочных сульфидсодержащих гидротерм в зоне смешения с поверхностными водами является основным процессом, приводящим к инверсии ряда термодинамических параметров рудообразующей системы. Железо для кристаллизации пирита не привносится раствором, а заимствуется из боковых пород. Об этом говорят как ничтожно малые содержания железа в растворах, широко наблюдаемые псевдоморфозы пирита по магнетиту и титаномагнетиту, так и почти полное отсутствие сульфидов железа в разрезе маложелезистых алевропелитовых и пеплово-пемзовых туфов на Фумарольном озере. Здесь по трещинкам в туфах обильно отлагаются агрегатные образования аурипигмента, реальгара, ковеллина, борнита, изредка встречаются гнезда тонкоигольчатого антимонита, по чрезвычайно редко — мелкие кристаллики иприта. Снижение активности комплексов и выпадение сульфидов металлов обусловлено несколькими причинами. Общим фактором, приводящим к нарушению равновесия, является снижение щелочности и повышение окислительно-восстановительного потенциала системы. Эти процессы могут происходить: