На эту остановку они попали совсем не так, как на другие. Долго петляли по коридорам, пока не подошли к стене, густо увитой диким виноградом. Ари достала из кармана ключ, нащупала под листьями замочную скважину… Прозвенела нежная, короткая песенка замка… Потом потайная дверца в стене отворилась и впустила их в сад. Но какой! Такие бывают только во сне. Чит даже ущипнул себя, чтобы проверить, не спит ли он на самом деле.
— Что значит эта таинственность? — полюбопытствовал он.
— Только то, что мы попали к самым загадочным числам на свете, — ответила Ари. — К совершенным.
— Так вот почему здесь так красиво! — сообразил он. — Но чем эти числа отличаются от других?
— Тем, что равны сумме своих младших делителей. Вот хоть самое маленькое совершенное число 6. Какие у него делители?
— Один, два, три и шесть.
— Верно. Впрочем, 6 здесь не младший делитель. Младшие — те, что меньше самогó числа. Сложи их — и получишь сумму, равную шести, иначе говоря, самомý числу: 1 + 2 + 3 = 6.
— Как просто! — удивился Чит. — Не понимаю, отчего ты называешь совершенные числа загадочными?
— Где совершенство, там и загадки. Отыскать совершенное число — настоящий подвиг! К IV веку до нашей эры их знали два: 6 и 28. Следующие два — 496 и 8128 — обнаружил Эвклид. Этот выдающийся древнегреческий учёный очень интересовался совершенными числами и даже указал, каким способом их отыскивать. Но сам при этом вычислил всего два. Следующее, пятое совершенное число — восьмизначное — нашлось только через восемнадцать столетий после Эвклида, в XV веке нашей эры; шестое и седьмое — в XVII… При этом с каждым вновь найденным числом значность их поднималась как на дрожжах. Восемнадцатое совершенное число содержит уже около двух тысяч знаков! Между прочим, число это получено в 1957 году с помощью электронно-вычислительной машины. И даже ей потребовалось для этого пять часов. А ведь такие машины считают молниеносно. Иная тратит полтора десятка секунд на то, что опытный математик вычисляет за год.
— Ого! — изумился Чит. — Теперь небось совершенных чисел пруд пруди, раз их отыскивают машины?
— Всего-навсего 24,— сокрушённо вздохнула Ари. — И это при том, что возможности вычислительных машин постоянно растут.
— В чём же дело?
— Ты забываешь, что попутно с возможностями машин возрастает и значность совершенных чисел, а следовательно, и сложность их проверки. Последнее из найденных, двадцать четвёртое совершенное число содержит свыше двенадцати тысяч знаков.
Ух ты! Чит прямо за голову схватился. Можно себе представить, сколько знаков окажется в двадцать пятом! Но Ари сказала, что как раз это представить себе нельзя. Да и только ли это? Кто, например, скажет, конечно или бесконечно множество совершенных чисел? И есть ли на свете нечётные совершенные числа? И каково, в свою очередь, их множество: конечно оно или бесконечно? Этого не знает никто.
— Даже ты? — не поверил Чит.
— Даже я, — спокойно призналась она. — Поистине, совершенные числа — самые загадочные, самые неуловимые. Наверное, потому их так чтили в старину. В Древней Греции самый уважаемый гость на пиру непременно находился на шестом месте от хозяина. Особый, божественный смысл придавали шестёрке пифагорейцы. Много размышлял о ней древнегреческий философ Платóн. Таинственный смысл придавали древние и числу 28. Не случайно в академии поздних пифагорейцев было 28 членов. И заседали они в большом зале, окружённом двадцатью восемью отдельными комнатами… Как видишь, совершенные числа повлияли и на обычаи, и на верования, и на философию, и на архитектуру. А знаменитый средневековый учёный Алкуин связывал с ними даже судьбы человечества. На земле, говорил он, потому так много горя и зла, что после всемирного потопа род людской пошёл заново от восьми людей, спасшихся в ноевом ковчеге, а число 8, увы, к совершенным не относится. Чрезвычайно уважали совершенные числа и служители христианской церкви. Долгое время считалось, что для спасения души достаточно изучать совершенные числа. А счастливцу, который найдёт новое совершенное число, обеспечено вечное блаженство на небесах…
— Ну, это уж чепуха на постном масле! — не выдержал Чит.
— Вот и я так полагаю, — согласилась Ари.
— А зачем же рассказываешь?
— Затем, что так думали люди прошлого. А не зная прошлого, не построишь и будущего. И ещё затем, чтобы ты понял, как много значат числа в жизни людей. Хотя в разные времена это и проявляется по-разному.