Что было! Чит попал на хоккей.
Играли команды с непонятными названиями: «Паскáлики» и «Фермáтики». Ребята отличные! Но правила у них все-таки чудные. В обычном хоккее как? Там есть постоянные тройки нападающих, и меняются они по указанию тренера. Не то в команде «Паскаликов»! Здесь почему-то тройка каждый раз выбирается заново из восьми нападающих под номерами 1,2,3,4,5,6,7,8.
Чит, ясное дело, спросил, почему такой непорядок? Оказалось, тренер готовит «Паскаликов» к международному матчу и проверяет, какое сочетание игроков самое боеспособное. Для этого ему, видите ли, необходимо перепробовать все возможные сочетания из восьми пó три. Таких сочетаний оказалось немало, но Чит их, конечно, не запомнил, потому что следил за игрой. А тут ещё тренер «Ферматиков» тоже искал наилучшее сочетание. Но уже не нападающих, а защитников. Их в команде было шесть, а на поле, как и положено, постоянно находилась одна пара, зато каждый раз составленная из других номеров.
Когда матч окончился, Читу загорелось узнать, сколько раз сменялись нападающие у паскаликов и защитники у ферматиков.
Он ринулся было вслед за хоккеистами, чтобы расспросить их, а заодно получить автографы, но Ари сказала, что брать автографы не обязательно, а сосчитать, сколько было перемен, можно и самому. Чит стал перебирать варианты троек нападающих, но скоро запутался, разворчался и заявил, что у него от сочетаний голова распухла. Но Ари опять-таки сказала, что это не от сочетаний, а оттого, что он не знает правила, и нарисовала в блокноте ряд из восьми хоккеистов с номерами от единицы до восьмёрки.
— Нам нужно получить все возможные сочетания из восьми по три, — начала она. — Для этого отсчитаем три номера слева (1,2,3) и три справа (8,7,6). Теперь перемножим числа каждой тройки и разделим произведение правой на произведение левой: (8 × 7 × 6)/(1 × 2 × 3) = 56. Вот тебе и число сочетаний из восьми пó три.
Это было так просто, что с числом сочетаний из шести по два Чит сладил сам. Он нарисовал шесть хоккеистов с номерами от единицы до шестёрки, отсчитал два номера слева (1,2), два справа (6,5), перемножил и разделил, что положено, и получил вот что: (6 × 5)/(1 × 2) = 15.
Совершив этот подвиг, он пожелал узнать, кто придумал такое расчудесное правило? Оказалось, сразу двое. Два французских математика: Блез Паскáль и Пьер Фермá. Причём каждый сам по себе и в одно и то же время.
Теперь стало ясно, отчего команды называются «Паскаликами» и «Ферматиками». Куда труднее было понять, каким образом одно и то же правило пришло в голову одновременно двум незнакомым людям. Но Ари сказала, что не такие уж они незнакомые. Положим, встречаться им и впрямь не приходилось. Но жили они в одни и те же годы XVII века, интересовались одними и теми же математическими вопросами и не раз обменивались мнениями в письмах. Долго ли тут додуматься до одного и того же? Так что случайностью это не назовёшь! Хотя занимались Ферма и Паскаль именно наукой о случайностях…
— Теорией вероятностей? — вспомнил Чит.
— Да, той самой, с которой ты познакомился на остановке «Жребий».
— А сочетания при чём?
— Видишь ли, сочетаниями занимается комбинаторика — есть такой важный раздел математики. А комбинаторика в тесной дружбе с теорией вероятностей. Ведь если разобраться, чего добивались тренеры в нынешнем матче? Искали наиболее, удачное сочетание нападающих и защитников. А для чего? Чтобы повысить вероятность выигрыша. Следовательно, вероятность удачи зависит от того, насколько удачно скомбинированы игроки. Улавливаешь связь?
Чит важно кивнул. Он чувствовал себя необыкновенно образованным! Теперь ему ничего не стоит вычислить любое число сочетаний… Но Ари — ох уж эта Ари! — неожиданно объявила, что всё уже вычислено заранее, и достала из кармана листок с числами, выстроенными треугольником.
— Видишь этот числовой треугольник? Так вот, любое число в нём есть какое-нибудь число сочетаний.
— Но ведь в этом треугольнике всего десять строк, — сказал Чит, взглянув на номер нижней строки.
— Одиннадцать, — поправила Ари. — Первая строчка нулевая, так же как и первый слева наклонный ряд единиц.
— Пусть нулевая, — упрямо боднул головой Чит. — Но самое большое число здесь 252. А если мне понадобится большее?
— Подумаешь! Возьмёшь да продолжишь треугольник на столько строк, сколько потребуется. Это совсем не трудно: каждое число в строке равно сумме двух чисел предыдущей строки, между которыми оно расположено. Так, число 21 в строке № 7 равно сумме чисел 6 и 15 из строки № 6. Ясно?