Выбрать главу

— Ясно. Но ты не сказала, как искать нужное число сочетаний в этом треугольнике.

— Спасибо, что напомнил. Возьмём, к примеру, всё то же число сочетаний из восьми пó три. Чтобы найти его, достаточно заглянуть в строку № 8 и отсчитать четвёртое число слева (помня, что первое число слева нулевое). А это, как видишь, и есть 56.

— Любопытно.

— Это что! В треугольнике Паскаля любопытных свойств много. А я познакомила тебя только с одним, хотя и самым главным…

— А почему ты называешь этот треугольник именем Паскаля?

— Потому что именно Блез Паскаль исследовал его свойства. Но на подробное знакомство с ними в первом маршруте, к сожалению, времени не отпущено. Так что потерпи до другого раза.

Уравнение —

так называлась следующая остановка, и Чит всё гадал, что там уравнивают? Паркет? Асфальт? Или песок на дорожках? Но то, что здесь тянут канат, ему и в голову не приходило.

На ярко-зелёном газоне собрались две стайки чисел — одни в белых, другие в пёстрых, полосатых майках, за что Чит немедленно окрестил их белопузиками и полосатиками. Тут же околачивалось несколько Плюсов и двое судей: знак Равенства и знак Больше-Меньше, очень, кстати, похожий на рогатку без ручки.

Сперва мерялись силами белопузики Тройка и Пятёрка и полосатики Двойка и Семёрка. Перетянули полосатики, после чего участники состязания выстроились в ряд и вместе с Плюсами и судьёй Больше-Меньше образовали такое выражение: 2 + 7 > 3 + 5.

Потом тянули кота… то есть канат за хвост целая куча белопузиков — Единица, Двойка, Тройка, Четвёрка, Пятёрка и Шестёрка и один-единственный полосатик Двадцать Пять, который тем не менее пересилил. На сей раз Больше-Меньше услужливо поворотил свою рогатку вправо, раструбом к победителю; и Чит, подсчитав сумму белопузиков, с удовольствием отметил, что судья честен и справедлив: 1 + 2 + 3 + 4 + 5 + 6 < 25.

Следующий результат был ничейным, потому что сумма белопузиков и сумма полосатиков оказались одинаковыми. Наверное, поэтому игру судил не Больше-Меньше, а знак Равенства, который весьма убедительно доказал, что 3 + 7 + 5 = 6 + 9.

— Так это и есть уравнение? — спросил Чит.

— Пока что только равенство, — возразила Ари.

— Можно подумать, равенство и уравнение — не одно и то же!

— Уж конечно. Всякое уравнение — равенство, да не всякое равенство — уравнение. В уравнении непременно есть какое-нибудь неизвестное, которое надо сделать известным. Это и значит решить уравнение…

— Погоди, Ари, — возбуждённо перебил Чит, указывая на новую группу соревнующихся, — что тут делает буква «ха»?

Но оказалось, что никакое это не «ха», а латинское «икс» — одна из тех букв, которыми принято обозначать неизвестное число в уравнении.

«Эге! Стало быть, уравнение не за горами», — подумал Чит.

Теперь за канат ухватились с одной стороны белопузики Икс и Пятёрка, с другой — солидное полосатое Двенадцать. Тянули они, надо сказать, на совесть, даже покраснели от натуги. Только зря: партия всё равно окончилась вничью. Но с этой минуты всё пошло не так, как прежде. Кто-то из полосатиков крикнул:

— Пятёрку с поля долой!

— Долой, долой! — подхватили остальные полосатики.

Но белопузики заявили, что уберут Пятёрку только в том случае, если и полосатики выставят бойца на пять единиц меньше.

После недолгого совещания судьи решили вопрос в пользу белопузиков. И вот один конец каната держит Икс, а другой — Семёрка. Канат, впрочем, с места не сдвинулся, и все поняли, что x = 7.

Чит хлопал так, что чуть ладони не отбил. Очень уж ему понравилось, как просто решаются уравнения. Но Ари сказала, что в этом вопросе не мешает разобраться получше, и отвела его в сторонку. Потом она вынула блокнот, написала «x + 5 = 12» и приступила к объяснениям.

— Перед нами уравнение с одним неизвестным. Как его решить? Прежде всего, оставим икс в одиночестве или, как говорят математики, уединим его по одну сторону равенства. В нашем уравнении для этого достаточно уменьшить обе части равенства на 5, отчего равенство, естественно, не нарушится. Итак, что же у нас получится? x + 5 – 5 = 12 – 5. Но пять минус пять, как известно, равно нулю. Таким образом, в левой части равенства остаётся только икс, а в правой — двенадцать минус пять, что равно семи. Теперь ясно, что вычитать одно и то же число из обеих частей равенства вовсе ни к чему. Достаточно перенести пятёрку из левой части в правую, но с обратным знаком: x + 5 = 12; x = 12 – 5. Вот так и решаются уравнения первой степени.