У этого закона есть много других подтверждений. На нем основаны все вычисления движений частиц по законам ньютоновской механики, и хотя в некоторых случаях наблюдаются отклонения от ее предсказаний, они всегда объясняются хорошо известными причинами. Расчеты квантовой механики тоже базируются на предположении о справедливости закона, а они неизменно с высокой точностью соответствуют наблюдениям. Для сомнений в том, что энергия сохраняется, и притом сохраняется в точности, места не остается.
Но как ни огромна важность закона сохранения энергии в техническом и экономическом отношении, как ни универсальна его роль в решении физических задач, в структуре любого учебника физики, на деле он еще важнее, чем кажется. На нем зиждется «причинность», с виду неопровержимое утверждение, что каждое событие обусловлено событием предыдущим. Не будь причинности, мир сделался бы непредсказуемым. Вселенная превратилась бы в хаотическую свалку не связанных друг с другом происшествий. Причинность дает нам шанс на понимание природы: от каждой причины мы можем проследить цепь ее следствий, для каждого события – восстановить его причину. Причинность позволяет найти в мире порядок и систематическое поведение, управляемое законами природы, и, следовательно, именно из нее рождаются воплощенные в науке формы познания. Сохранение энергии играет в причинности центральную роль, накладывая на возможности осуществления событий мощные ограничения: в любом событии энергия должна сохраняться. Требование сохранения энергии можно сравнить с суровым, недремлющим и неподкупным полицейским надзором, запрещающим малейшее отклонение от закона, который ограничивает содержание энергии в мире единым, раз навсегда установленным и неизменным в космических масштабах значением. Если бы энергия не сохранялась, ограничения на возможные действия, вызванные какой-либо первопричиной, были бы менее строгими, а это могло бы привести к нарушению причинности. Да, существуют и другие ограничения, но понятие энергии настолько важно для поведения любого объекта, настолько универсально, что сохранение этой величины имеет первостепенное значение. Как я уже отмечал в главе 1, закон сохранения энергии – царь всех «внутренних» законов, основной первозакон природы.
Так почему же сохраняется энергия? Каково происхождение этого наивысшего закона? Вот тут-то и появляется Эмми Нётер, и освещает голую пустоту, о которой я призвал вас задуматься, сиянием своей великолепной теоремы. Центральный момент построенного Нётер доказательства происхождения сохранения какой-либо величины из связанной с этой величиной симметрии заключается в том, что в конкретном случае сохранения энергии, на котором мы сейчас и сосредоточились, оно проистекает из однородности времени. Эта однородность и создает симметрию, позволяя тем самым применить теорему Нётер.
Что же эта однородность означает на практике? На первый взгляд однородность времени значит, что, независимо от того, выполните вы один и тот же эксперимент в понедельник, четверг или в любой другой день, вы получите один и тот же результат. Другими словами, период колебаний маятника или высота, которой достигнет подброшенный мяч, будут одними и теми же, если, конечно, все остальные условия проведения эксперимента не изменятся. Чтобы выразить обусловленную однородностью времени независимость законов природы от момента, в который они применяются, мы называем эти законы «инвариантными по времени». На практике такая инвариантность означает, что если ваше уравнение описывает некоторый процесс в определенный момент времени, то же самое уравнение будет описывать этот процесс и в любой другой момент. В общем, законы природы не изменяются с течением времени. Следствия, вытекающие из этих законов, измениться могут – планета может оказаться на другой орбите, вы можете подбросить мяч сильнее, чем собирались, – но сами законы остаются инвариантными.
Теперь давайте попробуем взглянуть на это поглубже. Чтобы законы природы были инвариантными по времени, само время должно течь равномерно. Оно не может сначала замедлиться, потом ускориться, а потом вообще почти замереть. Подумайте, как бы выглядел полет мяча, или, в большем масштабе, движение планеты по ее орбите, если бы время на каком-то участке их траектории сжималось, а на другом – расширялось. Невозможно себе представить, что могла бы быть построена динамическая теория их движения. Мяч казался бы то ускоряющимся, то замедляющимся, то повисающим в воздухе при отсутствии каких-либо сил, заставляющих его это делать. В понедельник закон движения был бы одним, в четверг – другим. Даже если бы скачки` хода времени были бы не случайными, а регулярными, если бы оно то растягивалось, то сжималось периодически, полет мяча все равно происходил бы весьма причудливым образом. Вряд ли даже Ньютону удалось бы его описать. Наш мир был бы страшно запутанным в динамическом смысле. Чтобы законы природы были независимыми от того, когда они применяются, время должно течь с ненарушимой однородностью: тик… тик… тик… опять и опять, без конца, в идеально устойчивом ритме.