Предвижу доводы, которые вы могли бы выдвинуть, чтобы подорвать мое обоснование однородности времени. Один из них мог бы заключаться в том, что наши измерительные инструменты тоже, возможно, растягиваются и сжимаются в полном соответствии с колебаниями хода времени, влияющими на полет мяча. В этом случае мы бы, возможно, не заметили – и даже не могли бы заметить, – что время неоднородно. Если бы по той или иной причине физические параметры наших измерительных инструментов (в том числе наших глаз и ушей) синхронно изменялись, мы были бы слепы и глухи к этим изменениям. Думаю, на это можно возразить так: уравнения, решая которые мы описываем движение, вовсе не подвержены сжатиям и растяжениям (в том смысле, что «время», входящее в них в качестве параметра, не изменяется). То есть они дают объективное, а не субъективное описание движения. И хотя утверждение, обратное теореме Нётер (а именно, что если имеется сохраняющаяся величина, то должна найтись и связанная с ней симметрия) не столь хорошо обосновано, как прямая теорема (если есть симметрия, то есть и связанная с ней сохраняющаяся величина), следующий довод должен быть таким: поскольку нам известно, что энергия сохраняется, мы можем, хоть и с осторожностью, заключить, что время должно быть однородно.
Вы могли бы еще возразить, что когда Эйнштейн вскарабкался на плечи Ньютону, он увидел, что в космосе существуют локальные искажения времени (описание искажения пространства-времени в присутствии массивных объектов, таких как, например, планеты, составляет содержание общей теории относительности). Значит, время локально неоднородно, и поэтому теорема Нётер ничего не говорит о локальном сохранении энергии. Это серьезное возражение; выдвигая его, вы оказываетесь в хорошей компании. По-видимому, именно предложение исключительно проницательного и пользовавшегося огромным авторитетом немецкого математика Давида Гильберта (1862–1943) рассмотреть это возражение заставило Нётер дополнить свое доказательство, в результате чего появилась вспомогательная теорема («вторая теорема Нётер»). Чтобы снять это возражение, мне придется применить две увертки. К сожалению, в науке, как и в жизни, увертки всегда выглядят неубедительно, – приходится признать, что две увертки не стоят одного хорошего объяснения.
Прежде всего, – и это соответствует исходной формулировке теоремы, – я ограничу свое применение теоремы Нётер Вселенной в целом, во всем ее объеме. Хотя когда материя образовалась, когда она конденсировалась в планеты, солнечные системы и галактики, пространство-время вокруг них искажалось, в глобальном масштабе все же царит однородность – растяжение в одном месте компенсируется сжатиями в другом. Взятое в целом, пространство-время, как и его временна`я составляющая, (почти) определенно плоское. И во‐вторых, локально плоской является и любая достаточно малая область пространства-времени, а значит, закон сохранения энергии в этой области тоже применим [9].
Надеюсь, теперь вы согласитесь, хотя и с осторожностью, что время в глобальном масштабе (а также локально, в достаточно малых областях) однородно. Следовательно, соответственно первой теореме Нётер, энергия сохраняется. Как я уже замечал, если бы мы могли слышать ход времени, его «тик, тик, тик…» раздавалось бы вечно. Вот если бы время шло так: «тик, тик… тик… тик, тик» и так далее, оно не было бы однородно, – а значит, энергия бы не сохранялась, мир был бы непознаваем, а наука бесполезна.
И все же – почему время однородно? Здесь я в первый раз в этой главе вернусь к понятию бездействия и к моему предварительному предположению, что при сотворении мира ничего особенного не происходило. Мне необходимо снова вернуться с вами к моменту рождения Вселенной, к мгновению космогенеза. Но прежде, просто для порядка, надо упомянуть еще несколько вопросов и уладить их, не дожидаясь, пока они сами придут к вам в голову.
9
Стоит только открыть этот ящик Пандоры, и оттуда еще многое полезет. Различие между энергией и количеством движения (о котором далее будет идти речь в этой главе) зависит от состояния движения наблюдателя и объекта наблюдения. По ходу этого обсуждения мы должны будем интересоваться однородностью пространства-времени, а не каждой его составляющей по отдельности. Прошу прощения, что не отметил этого обстоятельства во вступлении к объяснению (хоть про себя я, разумеется, его отметил).