Выбрать главу

Что означает однородность пространства? Точно так же, как интерпретация однородности времени, о которой я говорил выше, интерпретация однородности пространства состоит в том, что эксперимент, выполненный в одном месте, даст тот же результат, что и эксперимент, выполненный в каком-то другом. Эксперименты, выполняемые в разных лабораториях, дадут одни и те же результаты. Законы природы не зависят от того, где вы находитесь. Следствия из этих законов могут оказаться различными, так как условия экспериментов могут не совпадать в точности, но сами законы не изменяются. Например, хотя закон, управляющий колебаниями маятника, общий, один и тот же маятник будет качаться с разными периодами на уровне моря и на вершине горы, где тяготение слабее. Если вы переходите из одного места в другое, вам не нужно изменять уравнение, которым выражается закон. Законы природы пространственно однородны.

Так как не существует внутреннего различия между пространством и временем (согласно теории относительности, это лишь два облика единого пространства-времени), любые рассуждения, относящиеся к свойствам времени, применимы и к свойствам пространства. Аналогично тому, что мы говорили о времени, если закон не изменяется от места к месту, значит, пространство должно быть однородным, то есть оно не может сплющиться здесь и растянуться там. Аналогично тому, что мы говорили об искажениях времени, трудно представить себе, как в условиях искаженного пространства можно было бы построить динамическую теорию полета мяча. И те же оговорки, которые мы делали, рассуждая об однородности времени, применимы и к пространству: есть существенное различие между общей пространственной однородностью Вселенной и однородностью ее малых локальных областей. То есть мы можем использовать первую теорему Нётер (ту, что связывает симметрию и сохранение), но не ее вторую теорему (ту, что относится к искаженному пространству-времени). Я полагаю, что в глобальном масштабе пространство является плоским.

Итак, теперь теорема Нётер предстает перед нами в новом контексте: в контексте однородности пространства. Согласно этой теореме, следствием однородности пространства является сохранение импульса (количества движения). И тут надо сказать несколько слов о концепции количества движения и его сохранении.

Количество движения – это произведение массы тела на его скорость [15]. У летящего с большой скоростью тяжелого пушечного ядра большое количество движения, у легкого теннисного мячика – маленькое. Здесь надо еще вспомнить, что у скорости как физической величины есть одно отличие от скорости в обиходном значении этого слова: она показывает, насколько быстро изменяется не только положение тела, но и направление его движения. Поэтому получается, что тело, преодолевающее в единицу времени одно и то же расстояние, но изменяющее при этом направление своего движения (например планета, обращающаяся по орбите вокруг Солнца), имеет непрерывно меняющуюся скорость. Когда вы отбиваете мяч битой, он может полететь обратно с той же скоростью, с которой прилетел, но направление вектора его скорости, а следовательно, и его количество движения, изменяется на противоположное. Говоря о количестве движения, всегда следует принимать во внимание не только его величину, но и направление. Это несколько усложняет идею сохранения количества движения, закон, согласно которому суммарное количество движения остается неизменным, – ведь вам надо учитывать все изменения направления движения (чего не происходит при рассмотрении сохранения энергии, где направление роли не играет). Но в конечном итоге все это довольно просто представить себе наглядно.

Количество движения сохраняется при столкновениях частиц. Простой пример – два одинаковых бильярдных шара, катящихся навстречу друг другу с одинаковой скоростью. Их общее количество движения равно нулю (их скорости равны, но противоположно направлены, а значит, при сложении дадут нуль). Столкнувшись, шары останавливаются; общее количество движения по-прежнему нулевое. Если шары движутся навстречу друг другу под углом, их общее количество движения уже не будет равно нулю, и после столкновения они откатятся друг от друга. При этом их новые траектории будут такими, чтобы общее количество движения оставалось неизменным. Каким бы ни был угол, под которым шары сталкиваются, как бы ни отличались их массы и скорости, сколько бы шаров ни участвовало в столкновении, – общее количество движения шаров после столкновения всегда останется таким же, каким было до него. Количество движения неизменно сохраняется – и происходит это благодаря однородности пространства.

вернуться

15

Количество движения p тела массой m связано со скоростью тела v выражением p = mv.