Выбрать главу

Но вернемся к «портрету» нашего желтого карлика. Как всякий истинный властелин (а Солнце — центральная фигура среди всех небесных тел, окружающих его), карлик имеет корону.

Корона хорошо видна невооруженным глазом во время солнечных затмений, и надо сказать, что даже простые фотографии короны производят сильное впечатление. Корона, самая внешняя часть «атмосферы» Солнца, состоит из чрезвычайно разреженного газа, нагретого до двух миллионов градусов.

Сразу же может возникнуть вполне естественный вопрос: почему температура фотосферы ниже температуры хромосферы и короны? Ответ состоит в том, что звуковые волны, голос Солнца, служат источником энергии, который нагревает корону. Именно поэтому во время затмения можно видеть яркий нимб, окружающий нашу звезду. Размеры короны солидны — несколько радиусов Солнца. Физику короны во многом определяют магнитные поля Солнца. Они образуют в короне «дыры» — области с пониженной температурой. Из дыр в короне с огромной скоростью истекает солнечный ветер — потоки заряженных частиц.

Когда-то, на заре своего рождения, Солнце было гораздо более неспокойным, чем сейчас, и существует точка зрения, согласно которой солнечный ветер был очень и очень интенсивным. Сейчас, в период своей зрелости, наше светило успокоилось, но все равно солнечный ветер и сегодня приносит нам уникальные научные данные, например о химическом составе Солнца. Ведь солнечный ветер облучает, скажем, поверхность Луны в течение миллиардов лет. Атомы самых различных элементов, из которых состоит солнечный ветер, а значит, и само Солнце, «вколачиваются» при столкновении в лунный грунт. Поэтому частички лунного грунта «помнят» химическую историю Солнца.

Когда американские космонавты высадились впервые на Луну, они оставили там на время кусочки золотой фольги. Солнечный ветер облучал фольгу, частицы Солнца внедрялись в нее, и потом, когда фольга была доставлена на Землю, ученые сравнили химический состав сегодняшнего солнечного ветра и того, который дул миллиарды лет назад…

Итак, мы получили некоторое представление о том что представляет собой наше Солнце сегодня. Картина, согласитесь, совсем не простая. Загадок и нерешенных вопросов немало: пятна, вспышки, одиннадцатилетний цикл, воздействие на наше здоровье магнитных полей Солнца. Все это «горячие точки» в нынешней физике нашей звезды. И конечно, о Солнце известно далеко не все, но не будь Солнца, физики могли бы лишь строить догадки о процессах, протекающих в других звездах, удаленных от него на огромные расстояния. Нужно отдавать себе отчет в том, что именно изучение Солнца помогло науке разобраться в строении миллиардов солнц нашей Галактики и Вселенной.

Наш рассказ о биографии Солнца был бы неполным и незаконченным, если бы мы с вами не попытались заглянуть в будущее и посмотреть, что же произойдет с нашей звездой в дальнейшем. Давайте попытаемся предсказать судьбу нашей звезды. Состояние современной астрофизики вполне позволяет делать столь смелые шаги.

А что в будущем?

Итак, в течение примерно пяти миллиардов лет живет наше Солнце. А сколько же ему еще осталось? Ведь и Солнце начнет когда-нибудь стареть. Как это будет происходить?

Здесь нам с вами придется оперировать уже законами и понятиями посложнее, чем закон Клайперона, описывающий поведение идеального газа.

Для начала вернемся к протон-протонному циклу. Мы уже говорили о том, что водород в центральных частях Солнца потихонечку выгорает. Сегодняшние оценки говорят, что водородной пищи Солнцу хватит еще на несколько миллиардов лет. В течение всего этого огромного промежутка времени в центре Солнца водород постепенно превращается в гелий. Гелий — нечто вроде золы в огромной ядерной топке Солнца. Только если из обычной печки золу можно убрать, то гелий накапливается, и таким образом у Солнца образуется гелиевое ядро. Процессы слияния ядер водорода в гелий приводят в конце концов к тому, что облегчается выход квантов света — фотонов к поверхности звезды, и поэтому светимость Солнца постепенно увеличивается.

Ядерные реакции по протон-протонному механизму уже не смогут идти в ядре, состоящем из гелия, а будут происходить лишь вокруг ядра, как бы в его оболочке. Гелий, образующийся в оболочке, добавляется к ядру, и его масса увеличивается. Ядро, естественно, начинает сжиматься. Но сжимается оно очень медленно, и энергия сжатия поэтому успевает выходить из него наружу. Температура ядра остается практически постоянной.