Выбрать главу

Объем его корпуса уменьшается по сравнению с гидросамолетом в четыре раза. А ведь в таком маленьком корпусе нужно разместить не только всю авиационную "начинку", но и оборудование сверхмалой подводной лодки: ее энергетическую установку, запасы энергии для подводного плавания, торпеды, мины и другое оружие весом до 700 килограммов. При всем этом хотя бы 30 процентов объема корпуса надо оставить для цистерн главного балласта, без которых нельзя погрузиться и всплыть.

В ходе проектирования возникают и другие проблемы. Как уже говорилось, в район выполнения боевой задачи сабплан полетит на одном фюзеляжном двигателе. Так как единица объема машины будет иметь значительный вес, этот двигатель должен быть небольшим, легким и достаточно мощным. В то же время сабплан должен обладать развитыми крыльями с большой подъемной силой. Тогда его взлетно-посадочная скорость будет небольшой, он сможет взлетать и садиться при значительных волнах.

Во время полета в заданный район сабплан израсходует примерно половину горючего, которое, как предполагают, разместится в цистернах главного балласта. Перед посадкой на воду машину надо подготовить к подводному плаванию. К этому моменту горючее в балластных цистернах должно быть или израсходовано или удалено, а другие переменные грузы размещены так, чтобы центр тяжести сабплана находился на одной вертикали и несколько ниже центра его водонепроницаемого объема.

Как же будет осуществляться плавание под водой? Для этого в кормовой части будет установлен гребной винт, приводимый в движение электромотором или парогазовой турбиной. Так как скорость подводного хода сабплана сравнительно невелика, сопротивление крыльев, очевидно, не будет очень большим. Однако на управляемость сабплана крылья окажут большое влияние.

Для плавания подводной лодки с нулевой плавучестью под водой крылья не нужны.

Кстати, и наличие их практически не скажется на устойчивости движения лодки. Маневренные же характеристики крылатой подводной лодки в вертикальной плоскости даже улучшаются.

При погружении сабплана через каждые 10 метров давление на него будет возрастать на одну атмосферу. Значит, при глубине погружения 25-50 метров и корпус должен быть рассчитан на давление в 5-10 атмосфер. С такими давлениями авиационным конструкторам обычно не приходится иметь дело. Следовательно, корпус сабплана должен быть построен не только по правилам строительной механики самолета, но и по законам строительной механики подводной лодки.

Выполнять боевую задачу под водой невозможно без современного гидроакустического оборудования, да и без обыкновенного перископа. Понятно, что без совмещения ряда функций приборов и органов управления, обеспечивающих полет и плавание сабплана, будет невозможно втиснуть всю аппаратуру в корпус машины. Совмещение потребуется и при обеспечении аварийно-спасательными средствами экипажа самолета на случай аварии под водой или в воздухе.

После выполнения боевой задачи сабплан должен выйти под водой из опасной зоны, всплыть к поверхности и взлететь с помощью двух крыльевых двигателей. Взлет - наиболее трудная проблема. Уже говорилось, что запас плавучести сабплана не может быть выше примерно 15-30 процентов. Поэтому при взлете крыльевые двигатели должны буквально вырвать машину из воды. Для этого, очевидно, будут использоваться рули высоты и закрылки, причем не только в воздухе, но и в воде.

Ну а как обстоит дело с практическим воплощением идеи?

Сабплан задал своим создателям множество труднейших задач. То он успешно нырял, зато никак не хотел отрываться от воды. То, наоборот, хорошо летал, но вода оставалась для него чужеродной средой. Даже самые упорные конструкторы терпели неудачу за неудачей в безуспешных попытках создать универсальный аппарат. Некоторые начинали даже сомневаться в осуществимости этого дела вообще. И только неутомимый Рейд не унывал, не отчаивался и в конце концов представил комиссии конкурса самый удачный проект.

"Вначале изобретатель построил, - пишет в журнале "Техника - молодежи" инженер Ю. Федоров, - опытный образец "Коммандер", зарегистрированный в США как первая летающая подводная лодка. У сигарообразного 7-метрового аппарата - дельтавидное крыло. В воздух машину поднимал двигатель внутреннего сгорания мощностью 65 л. с. , под водой же включается электромотор мощностью всего лишь 736 Вт. Пилот-аквалангист сидел в открытой кабине. "Трифибия" развивала в воздухе 100 км/ч, а на глубине - 4 узла.

На базе "Коммандера" Рейд соорудил более совершенный, реактивный аппарат "Аэрошип".

Выпустив лыжи, двухместная "трифибия" садилась на воду. С пульта управления пилот закрывал воздухозаборники и выхлопное отверстие турбореактивного двигателя задвижками (которые при этом открывали водозаборники и выходное сопло водомета). Включается насос, заполняющий балластные цистерны в носу и корме. "Аэрошип" погружался. Оставалось убрать лыжи, пустить электромотор, поднять перископ, и самолет превращался в подводную лодку. Чтобы всплыть и взлететь, операции нужно было проделать в обратном порядке. Топливные баки располагались в крыле. Рули направления и глубины одновременно и элероны. Балласт вытеснялся сжатым воздухом.

В августе 1968 года на глазах у тысяч посетителей Нью-йоркской промышленной выставки "Аэрошип" спикировал, нырнул в воды залива, немного поманеврировал на глубине, а потом с ревом взмыл в небо. Но, увы, технические данные "Аэрошипа" еще были весьма далеки от конкурсных требований. Дальность полета машины была небольшой, скорости в воздухе и под водой невелики - 130 км/ч и 8 узлов".

Что ж, разработка новой техники всегда сложное и многотрудное дело. Сабплан, естественно, не исключение. Трудно сказать, когда будет построен аппарат, который без оговорок будет годен для практического употребления, для выполнения боевых задач. Но, видимо, такое время, несмотря на все технические трудности, все же не за горами. Расчеты показывают, что концепция целесообразна и осуществима. А это, учитывая быстрый прогресс техники и науки, уже немало.