б) луч АВ совместится с любым, заранее заданным лучом А′В′, исходящим из точки А′;
в) точка С совместится с некоторой точкой С′ в любой, заранее указанной полуплоскости, опирающейся на луч А′В′ (таких полуплоскостей, естественно, две). После этого дальнейшее движение фигуры невозможно.
И наконец, аксиома, показывающая, что зеркальные отражения — частный случай преобразования движения.
8. Существуют движения, переводящие отрезок АВ в ВА, а угол АОВ в угол ВОА.
Эти восемь аксиом определяют все свойства движения, и теперь можно строго ввести понятие равенства, или — учено — конгруентности фигур.
«Фигура S называется равной фигуре S′, если ее можно совместить с фигурой S′ при помощи движения».
Теперь легко можно доказать такие теоремы:
1. Фигура S равна самой себе.
2. Если S равна S′, то и S′ равна S.
3. Если S равна S′, a S′ равна S″, то S равна S″.
Аксиомы планиметрии почти исчерпаны.
Остались:
IV. Аксиома непрерывности (аксиома Дедекинда).
Если все точки прямой разбить на два класса — I и II так, что любая точка класса II лежит правее любой точки класса I, то либо в классе I есть самая правая точка, и тогда в классе II нет самой левой, либо, наоборот, в классе II есть самая левая точка, и тогда в классе I нет самой правой.
Грубо говоря, эта аксиома означает, что в прямой нет разрывов — «пустых мест».
Ее необходимо ввести, чтобы было возможно построить строгую теорию измерения отрезков.
И наконец:
V. Аксиома параллельности.
Ко всякой прямой А через всякую точку, не лежащую на этой прямой, можно провести одну, и только одну, прямую, не пересекающую прямую А.
Забегая вперед, можно сообщить, что аксиоматика геометрии Лобачевского отличается от евклидовой лишь последней аксиомой. Все остальные аксиомы обеих геометрий совпадают.
Глава 4
Эпоха доказательств. Начало
Начнем с краткого списка имен. Проблему параллельных пробовали разрешить Аристотель, Посидоний, Птолемей, Прокл, Симплиций, Аганис — в античном мире; ал-Хазин, ат-Гуси аш-Шанни, ан-Найризи, Омар Хаййам, Ибн ал-Хайсан, Насир эд-Дин — на Востоке.
Клавий, Валлис, Лейбниц, Декарт, Плейфер, Лагранж, Саккери, Лежандр, Ламберт, Бертран, Фурье, Ампер, Даламбер, Швейкарт, Тауринус, Якоби — в Европе.
И еще несколько десятков известных и несколько тысяч безвестных математиков.
За счет проблемы пятого постулата можно было бы заполнить солидную психиатрическую клинику.
Это отнюдь не преувеличение. Многие люди тщетно тратили на попытки доказательства всю свою жизнь, приходя к мистическому ужасу либо к психическому заболеванию.
Одно из самых неожиданных свидетельств исключительной популярности этой проблемы — некое замечание Фомы Аквинского.
Фома был одним из крупнейших теологов христианского мира. В одном своем исследовании ему понадобилось почему-то решить сложнейшую проблему: «Что недоступно богу?»
Он указывает ряд вещей этого класса.
Бог не может, по Фоме Аквинскому, грубо нарушать основные законы природы. Пример: он не может превратить человека в осла. (Надо заметить, что многие каждодневно и самостоятельно решают эту проблему без помощи божественного промысла.)
Далее: бог не может уставать, гневаться, печалиться, лишить человека души и тому подобное.
В этом списке есть и такой пункт. Бог не может сделать сумму углов треугольника меньше двух прямых.
Я почти убежден, что пример этот не случаен. Фома Аквинский мог выбрать любую другую и значительно более очевидную теорему. Очень вероятно, что именно эту он взял потому, что были ему известны и тщетные попытки доказать пятый постулат и то, что утверждение: сумма углов треугольника равна двум прямым — эквивалентно пятому постулату.
Обычно полагают, что эта теорема стала известна в Европе в XVIII столетии. Фома Аквинский жил в XIII.
Но надо сказать, что арабские математики основательно исследовали задачу о параллельных и, в частности, получили и этот результат.
В раннем средневековье могли быть известны многие работы, бесследно затерянные позже.
В наше время трудно понять, сколь безнадежно запутанной представлялась вся теория параллельных до Лобачевского.
Сейчас любой хороший студент-математик максимум за две-три недели спокойной, нормальной работы докажет теорему: если сумма углов треугольника равна π, то справедлив пятый постулат.