Выбрать главу

Самое важное, поучительное и, если хотите, трогательное, что та история, за которой мы попытаемся проследить, символична, как иллюстрация одного из лучших качеств, отличающих людей от прочих приматов и объединяющих все расы в единый вид. Как догадывается проницательный читатель, автор воспевает бескорыстное стремление разобраться: в каком мире, собственно, мы живем, как устроена наша вселенная? И объединяющий людей такого сорта интернационализм, интернационализм эпох, стран и национальностей, вечно противостоит столь же вечному братству мещанства, братству сатрапов, карьеристов, завоевателей, честолюбцев, стяжателей и худшей части футбольных болельщиков.

Если представить себе некую фантастическую картину, усадив в одной комнате за застольной беседой Евклида, Хайама, Гаусса, Лобачевского и Эйнштейна, то маловероятно, что в какой-то момент Николай Иванович Лобачевский испытал бы необходимость искать общих знакомых или провозглашать за отсутствием тем разговора: «Ну, а теперь — анекдотики».

А с другой стороны, нужно с неохотой признать, что анекдоты времен Евклида (с легким изменением колорита, конечно) почти полностью исчерпывают духовный арсенал многих и многих наших современников.

Впрочем, идеализацией как науки, так и ее жрецов тоже не стоит излишне увлекаться. Можно найти сотни и сотни примеров блестящих ученых — совершенно аморальных людей.

И может быть, самое привлекательное во всей нашей истории то, что как неевклидова геометрия логически завершается общей теорией относительности, так галерея математиков — как правило, не только замечательных по таланту, но и по-человечески интересных людей — замыкается Эйнштейном.

Но вернемся же к Евклиду!

Для начала следует добавить несколько крепких выражений в адрес всех скотов, истреблявших Александрийскую библиотеку. Останься она цела, мы знали бы о греческом и римском мире в десятки раз больше, чем сейчас.

Вероятно, мы бы знали и об Евклиде. Но, к сожалению, на сей день едва ли не самый основательный источник по Евклиду — Прокл Диадох Константинопольский — геометр, написавший детальнейший «Комментарий на первую книгу «Начал». И раз уж мы все время ссылаемся на источники, необходимо маленькое замечание.

Когда мы обращаемся к истории древнего мира, то невольно возникает тот же эффект, что при наблюдении горной цепи с самолета. Все сглаживается, расстояния кажутся малыми, детали исчезают полностью. Видна лишь общая картина.

И невольно все греческие математики представляются почти современниками. Поэтому нелишне, вероятно, вспомнить, что Прокл (412–485 г. н. э.) жил на семьсот лет позже Евклида. Временной интервал куда больше, чем разделяющий нас, скажем, с Иваном Васильевичем Грозным. Посему не так уж странно, что сведения о жизни Евклида у Прокла отрывочны и случайны.

Есть еще один автор, живший несколькими десятилетиями раньше Прокла, — александрийский математик Паппус. Он пишет о Евклиде как о мягком, скромном и вместе с тем независимом человеке. История с Птолемеем приводится как одним, так и другим. «Точные» же биографические данные практически основываются на заметках неизвестного арабского математика XII века: «Евклид, сын Наукрата, сына Зенарха, известный под именем Геометра, ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира…»

Все.

Человек бесследно растворился в веках. Осталась его работа.

«Начала» — повторимся — книга уникальная. Более двух тысяч лет она была главным и практически единственным руководством по геометрии для ученых как западного, так и восточного мира. Еще в конце XIX столетия во многих английских школах геометрию изучали по адаптированному изданию «Начал», и вряд ли можно найти более выразительное свидетельство популярности. В этом смысле конкурировать с «Началами геометрии» могут разве что библия и евангелие. Но в отличие от последних основа «Начал» — строгая и жесткая логика. Точнее — Евклид все время стремится к таковой.

Можно полагать, что Евклид был последователь Платона и Аристотеля. А Платон, как помните, требовал строго дедуктивного построения математики.

В фундаменте — аксиомы: основные положения, принимаемые без доказательства, а далее все должно быть безупречно логично выведено из этих аксиом.

Этот идеал и пытается осуществить Евклид. Пытается, потому что с современных позиций буквально вся его аксиоматика неудовлетворительна.

Но это легко заявлять сейчас, после 25-столетних исследований. А в свое время логика Евклида оставляла совершенно подавляющее впечатление.