Кроме этого парадокса, получившего название фотометрического, возник другой, названный гравитационным. Оказалось, что если бы в бесконечной Вселенной была лишь конечная масса материи, то вся эта материя должна была бы собраться в одном месте, в один ком. А если суммарная масса бесконечна, то при равномерном распределении произошло бы взаимное уравновешивание сил тяготения.
Оба эти парадокса можно устранить, предположив, что материя распределена во Вселенной неравномерно. Но это ведет к гипотезе о существовании центра Вселенной, что не менее удивительно, чем конечность массы во Вселенной. А кроме того, как показали современные наблюдения, в нашей Метагалактике материя распределена более или менее равномерно.
Как фотометрический, так и гравитационный парадоксы оказались устранены лишь после того, как в XX в. была создана новая теория о строении Вселенной, основанная на общей теории относительности Эйнштейна. Прежде чем рассказывать о новых представлениях, сделаем еще один экскурс в математику.
Кривое пространство.
В своем романе "Астронавты" писатель-фантаст Станислав Лем писал: "Картина звездного неба менялась очень быстро. Снимки, сделанные еще вчера, не совпадали со снимками, сделанными сегодня. Казалось, что какая-то таинственная сила раздвигает звезды, словно они являются крапинками на поверхности воздушного шарика, который раздувается все сильнее и сильнее. Гравитолог Звездной экспедиции уже несколько дней не отходил от вычислительной машины. Экспедиция приближалась к тяжелой звезде, сильно искривлявшей окружающее пространство. Для определения курса корабля было необходимо непрерывно вычислять эту кривизну. Это была серьезная проверка. Люди впервые сталкивались со столь сильными полями тяготения, со столь большой кривизной. Уравнения, полученные когда-то Эйнштейном, держали теперь экзамен. От них зависел успех экспедиции и даже сама жизнь ее участников".
Наиболее непонятными в этом отрывке для читателя, незнакомого с современной математикой, являются слова о кривизне пространства — вообразить себе кривое пространство куда труднее, чем кривую линию или поверхность. Не зря, когда во второй половине XIX в. возникло это понятие, была сложена эпиграмма:
(люди никак не могут понять, что такое мера кривизны пространства).
Обычные возражения против искривленности пространства таковы. Кривую линию невозможно совместить с прямой и приходится располагать на плоскости или в пространстве. Точно так же и кривую поверхность невозможно поместить на плоскости — для этого нужно по крайней мере трехмерное пространство. Следовательно, и искривленное трехмерное пространство должно лежать в каком-то объемлющем его пространстве четырех, а то и пяти измерений. А так как никто четырехмерного пространства не наблюдал, то пространство, в котором мы живем, никак не может быть искривленным. Некоторые философы добавляли к этим рассуждениям всякие слова об идеализме, фидеизме и т. д. Зато авторам научно-фантастических рассказов идея четырехмерного пространства очень понравилась. Во многих рассказах и повестях Уэллса происходят путешествия в четвертом измерении.
На самом деле искривленность пространства совсем не связана с четвертым измерением, а является, так сказать, его внутренним делом. И установить искривленность можно не выходя из этого пространства, а лишь проводя измерения внутри него.
Для того, чтобы читателю было яснее, как это делается, расскажем сначала, как установить кривизну поверхности, не покидая ее, а лишь измеряя расстояния между ее точками.
Геометрия на Ялмезе.
В течение многих тысячелетий люди думали, что Земля плоская. Однако наблюдения за тенью Земли во время лунных затмений привели древнегреческих ученых к мысли о шарообразности Земли. Эратосфену удалось даже с довольно большой точностью измерить ее радиус. Но после того, как снова воцарилась мысль, что Земля плоская, для доказательства шарообразности Земли понадобилось кругосветное путешествие Магеллана.
А теперь представьте себе планету Ялмез, где живут разумные существа, но небо закрыто вечной пеленой облаков, а океанские путешествия по тем или иным причинам невозможны. Смогли бы жители этой планеты узнать, что кости, со всех сторон окруженном водой, а на сфере? Иными словами, было ли необходимо путешествие Магеллана для того, чтобы доказать шарообразность Земли?[27]
27
Разумеется, автор не ставит под сомнение ни географическую ценность путешествия Магеллана, ни его историческое значение. Речь идет только о чисто математическом вопросе: как установить искривленность земной поверхности, не совершая кругосветных путешествий?