Чтобы найти кривизну в какой-то точке поверхности, надо брать все меньшие и меньшие треугольники, охватывающие эту точку, и искать их кривизну, отнесенную к единице площади. В пределе мы получим кривизну поверхности в данной точке. Это определение кривизны дал Гаусс, и ее обычно называют гауссовой кривизной. Если треугольники имеют избыток, то гауссова кривизна поверхности положительна, а если сумма углов меньше π, то кривизна отрицательна.
Если поверхность выпукла, то ее гауссова кривизна во всех точках положительна, а для бублика, изображенного на рис. 5 (математики называют его тором), в одних точках гауссова кривизна положительна, а в других — отрицательна.
Рис. 5
Замечательным свойством гауссовой кривизны является то, что она не меняется при изгибании поверхности, то есть при ее преобразованиях, не изменяющих расстояний между точками. Отсюда ясно, например, что во всех точках цилиндра гауссова кривизна равна нулю. Ведь цилиндр получается изгибанием куска плоскости, а кривизна плоскости равна нулю. Равна нулю гауссова кривизна и во всех точках конуса, кроме его вершины.
Псевдосфера и геометрия Лобачевского.
На сфере во всех точках кривизна одна и та же, и притом положительна. А есть поверхность постоянной отрицательной кривизны. Ее называют псевдосферой. Она получается следующим образом.
Представим себе, что в точке A стоит человек, который держит на поводке собаку (рис. 6). Вначале собака находится в точке O. После этого она бежит по прямой Oz с постоянной скоростью, а ее хозяин бежит вслед за ней так, что его скорость все время направлена вдоль поводка. Поэтому сначала хозяин бежит в направлении AO. Но по мере того, как собака продвигается по прямой Ox, направление бега хозяина образует все меньший угол с этой прямой, причем расстояние от бегущего человека до прямой Ox становится все меньше. На рис. 6 изображена линия, по которой бежит человек. Она называется трактрисой и обладает следующим замечательным свойством: в какой бы точке M к ней ни провести касательную, отрезок этой касательной между точкой M и осью Ox имеет одну и ту же длину.
Рис. 6
Если повернуть трактрису вокруг прямой Ox, то получится псевдосфера (рис. 7). Эта поверхность замечательна тем, что геометрия на ней совпадает с геометрией на куске плоскости Лобачевского. Поэтому открытие псевдосферы было очень важным этапом в развитии неевклидовой геометрии.
Рис. 7
Гаусс и Риман.
В работах Гаусса был до конца решен вопрос о том, что такое кривизна поверхности. На повестку дня встала проблема, как определить меру кривизны пространства. Это удалось сделать одному из самых замечательных математиков XIX в.- Бернгарду Риману.[28]
Проблеме кривизны пространства была посвящена пробная лекция, прочитанная Риманом в 1854 г. Тогда в университетах существовал хороший обычай: начинающий преподаватель должен был прочесть лекцию для членов факультета, чтобы они могли определить его педагогические способности. Риман предложил несколько тем пробных лекций, из которых Гаусс выбрал одну, сильнее всего заинтересовавшую его — "О гипотезах, лежащих в основании геометрии". Надо полагать, что слушатели остались не слишком высокого мнения о педагогических дарованиях Римана: содержание лекции понял до конца лишь один слушатель — Гаусс.
Почти без формул и выкладок Риман развил общие идеи о многомерных многообразиях, об измерении длин в таких многообразиях, их кривизне и т. д. В лекции были поставлены интересующие до сих пор физиков-теоретиков вопросы о том, непрерывно или дискретно наше пространство, применима ли обычная геометрия к бесконечно-малым областям пространства. Глубина этих идей захватила Гаусса, и, как рассказывают очевидцы, он ушел домой в глубокой задумчивости.
Кривизна пространства.
Как же ответил Риман на вопрос: что такое кривизна пространства и как она измеряется? Он применил тот же способ, каким Гаусс измерял кривизну поверхности: подсчитывал сумму углов треугольника, составленного из отрезков геодезических линий, и смотрел, на сколько она отличается от π. Однако при этом возникло осложнение: ведь в пространстве через точку можно провести много плоскостей и кривизна зависит не только от того, в какой точке ее вычисляют, но и от того, в какой плоскости лежат треугольники. Поэтому Риман говорил не о кривизне в данной точке, а о кривизне в данной точке в направлении данной плоскости.
28
Риман Бернгард (1826-1866) — немецкий математик, получил ряд замечательных результатов в теории функций комплексного переменного, геометрии и других областях математики. Один из создателей общего понятия многомерного пространства (риманова геометрия).