Другие частицы, описываемые Стандартной моделью, не являются строительными блоками материи, они выполняют другую работу. Четыре из них, отвечающие за перенос взаимодействий, существующих в природе, называются бозонами14. Мы не проваливаемся сквозь пол благодаря электромагнитному взаимодействию, которое переносится фотонами — квантами, “частицами света”. Внутри атомных ядер кварки склеиваются “сильным взаимодействием”, носителями которого являются частицы, метко названные глюонами (от английского glue — клей). Другие частицы, называемые W- и Z- бозонами, являются носителями сил, определяющих слабые взаимодействия, они вступают в дело, когда распадаются некоторые радиоактивные элементы15. Стандартную модель венчает еще одна частица, теоретически предсказанная Питером Хиггсом и названная в его честь бозоном Хиггса.
Казалось бы, в Стандартной модели есть все, что нужно, чтобы ответить на вопросы об источнике массы. Если все известные нам стабильные вещества состоят из кварков и электронов, то резонно предположить, что массы этих элементарных частиц — наименьшие возможные единицы массы. Тогда легко посчитать, какую массу имеет любой объект, просто просуммировав вклады всех миллиардов кварков и электронов, содержащихся в нем. Однако все не так просто.
Когда при суммировании получается неправильный ответ, это обычно означает, что мы что-то упустили. Вот, к примеру, протон. Он состоит из двух верхних кварков и одного нижнего. Если вы сложите их массы, то получите всего 1 процент массы протона. Но откуда же остальные 99 процентов его массы? То же самое происходит и с нейтроном, который содержит один верхний кварк и два нижних. Если ньютоновское определение массы, согласно которому масса — просто мера количества вещества, было бы правильным, то суммирование масс кварков дало бы правильный ответ. Но Ньютон знал только часть правды. Недостающая масса берется откуда-то еще.
Сложная это штука — масса. А насколько сложная, стало ясно в 1905 году, когда 26-летний Альберт Эйнштейн, работая днем в патентном ведомстве в Берне, в Швейцарии, а вечерами занимаясь физикой, написал и опубликовал статью под названием “Зависит ли инерция тела от содержащейся в нем энергии?”. Забегая вперед, скажем, что ответ положительный. Эйнштейн показал, что масса и энергия взаимозаменяемы, более того — масса может рассматриваться как мера содержания энергии в теле. Для научного сообщества эта идея прозвучала как гром среди ясного неба. Она — прямое следствие специальной теории относительности Эйнштейна16. Именно тогда Эйнштейн вывел уравнение m = Е/с2, где масса предмета равна его энергии, деленной на квадрат скорости света. Переписав, получаем всем хорошо знакомое уравнение Е = mс2, из которого легко увидеть, что из-за гигантских значений скорости света (около 300 000 километров в секунду) даже в объектах с маленькой массой содержится огромное количество энергии.
Открытие Эйнштейна в определенной степени объясняет, почему масса протона больше, чем сумма масс его частей. Масса трех кварков внутри протона равна всего лишь одному проценту массы протона, но они удерживаются вместе благодаря чрезвычайно сильным взаимодействиям. Основная часть массы протона приходится на энергию движения кварков внутри протона и энергию их связи. Это приводит нас к замечательному выводу: большая часть массы любого объекта от вашей любимой собаки до мобильного телефона — определяется огромной энергией, которая в нем заключена и благодаря которой объект остается единым целым.
Взаимосвязь между массой и энергией, открытую Эйнштейном, лучше всего демонстрируют гигантские ускорители, которые физики используют для изучения субатомных частиц. Столкните две частицы друг с другом на достаточно высоких скоростях, и осколки при столкновении, скорее всего, будут содержать более тяжелые частицы, чем исходные. Энергия, выделяющаяся при столкновении, практически мгновенно переходит в массу новых частиц.
Совместными усилиями Ньютон и Эйнштейн заложили основы нашего понимания природы масс, но в 1960-х годах стало ясно, что не хватает чего-то еще. Ученые никак не могли объяснить, откуда элементарные частицы получили свою массу. Именно эту тайну теория Хиггса, кажется, объяснила. И именно с ее помощью ученые надеются найти полное объяснение происхождения массы всей известной нам материи.
Питер Хиггс прибыл в Чапел-Хилл 6 сентября 1965 года. Оставив Джоди, которая была в то время беременна, у ее родителей в городе Урбана, штат Иллинойс, он принялся обустраивать их новый дом. Начав работу в университете, он приступил к своей первой большой работе о происхождении массы. 24 сентября, когда он трудился в факультетской библиотеке, его позвали к телефону — голос в трубке сообщил, что Джоди только что родила их первого сына, Кристофера.
Закончив статью о массе в ноябре, Хиггс послал один экземпляр в редакцию журнала и еще несколько — физикам, которым, как он думал, она будет интересна. Теория Хиггса описывала критический момент рождения Вселенной, хотя тогда, в 1965 году, это было еще не совсем понятно. Молодой ученый показал, что поначалу строительные блоки материи вообще ничего не весили. Элементарные частицы были совершенно невесомыми. Затем, через доли секунды после Большого взрыва события, которое запустило жизнь во Вселенной, что-то случилось17. Некое энергетическое поле, распространенное во всем пространстве, вдруг включилось, и в тот же самый момент безмассовые частицы, которые носились вокруг со скоростью света, были захвачены этим полем и приобрели массу. И чем сильнее они чувствовали воздействие поля, тем тяжелее становились.
Время начало отсчет 13,7 миллиарда лет тому назад, когда случился самый первый взрыв18. Вселенная тогда была микроскопическим сгустком огромной энергии, слишком перегретая, чтобы в ней действовали известные нам сейчас законы природы. Но в мгновение ока (если бы там поблизости был кто-нибудь, кто мог бы мигнуть оком) Космос вырос до размеров волейбольного мяча и охладился достаточно (примерно до 10 тысяч триллионов градусов Цельсия), чтобы поле Хиггса ожило. И тут же первые строительные блоки материи были укрощены, они сделались тяжелыми и медлительными, как мухи в супе.
Поле Хиггса определило структуру Вселенной и ее способность поддерживать жизнь в том виде, в котором она существует. Без поля элементарные частицы, строительные блоки материи, вели бы себя как фотоны — кванты света. Частицы бы не собирались в атомы, которые мы наблюдаем сейчас. Не возникли бы химические элементы19. Не появились бы звезды и планеты, и наша Солнечная система, как и другие уголки Вселенной, осталась бы навсегда безжизненной пустыней.
В основе теории Хиггса — частица, связанная с этим массообразующим полем. Так называемый бозон Хиггса в определенном смысле есть часть поля, оставшаяся после того, как оно наделило частицы массами20. Самая большая мечта ученых сегодня показать, что эта частица существует, и тем самым доказать теорию Хиггса.
Вскоре после того, как Хиггс разослал ученым свою статью, в его офис в Чапел-Хилле пришел первый отклик от Фримена Дайсона. (Во время Второй мировой войны англичанин Дайсон служил в команде бомбардировщиков Королевских ВВС. Он пересек Атлантику в возрасте 23 лет, сжимая в руке письмо, в котором было написано, что он признан лучшим математиком Англии. За истекшее время он стал знаменитым ученым и профессором принстонского Института перспективных исследований.)
14
Частицы — переносчики взаимодействия в Стандартной модели — бозоны, а именно фотоны (электромагнитное взаимодействие), глюоны (сильное взаимодействие) и W- и Z-бозоны (слабое взаимодействие). Пятый в этом ряду — бозон Хиггса. Термин “бозоны” появился в честь индийского физика Сатиендра Нат Бозе. Более подробную информацию о Бозе см. в кн.: Satyendra Nath Bose: His Life and Times, edited by Kameshwar С Wali. World Scientific, 2009.
15
Из всех фундаментальных сил природы слабые силы, вероятно, наименее известны. Все частицы, за исключением глюонов и фотонов, ощущают действие слабых сил. Они действуют на столь коротких расстояниях, что по сути дела являются контактными. Слабая сила принимает участие в радиоактивном бета-распаде. когда радиоактивные элементы испускают электроны или позитроны высоких энергий. При обмене W-бозонами тип кварка может измениться, или — говоря иначе — изменится аромат.
16
Ньютоновские законы движения прекрасно описывают объекты (или частицы), которые движутся значительно медленнее, чем свет. Но при скоростях, близких к скорости света, физические законы резко изменяются, и важную роль начинает играть теория относительности Эйнштейна. Эта теория является следствием двух утверждений: во-первых, скорость света одинакова для всех зрителей, независимо от их относительных скоростей, а во-вторых, законы физики одинаковы во всех инерциальных (неускоряющихся) системах отсчета. Иными словами, законы физики одинаковы, находитесь ли вы в стационарной лаборатории или мчитесь в пространстве с постоянной скоростью.
17
Ученые подсчитали, что уже за 1 пикосекунду, или одну триллионную долю секунды, после Большого взрыва Вселенная достаточно остыла, чтобы включилось поле Хиггса.
18
Ученые в целом соглашаются, что Вселенной 13,7 млрд лет. А что происходило до этого? Теория до сих пор ничего не может сказать по этому вопросу, и мы, возможно, никогда этого не узнаем. Стивен Хокинг сравнил вопрос о том, что происходило до Большого взрыва, с вопросом о том, что находится к северу от Северного полюса.
19
Исчезновение поля Хиггса или изменение его напряженности имело бы драматические последствия, например, для химии. Электрон приобретает массу с помощью поля Хиггса. Без этого поля электроны остались бы безмассовыми и двигались бы слишком быстро, чтобы атомные ядра захватили их на атомные орбиты. Периодическая система элементов перестала бы существовать.
20
В Стандартной модели поле Хиггса является сложным и состоит из двух нейтральных и двух заряженных компонентов. Два заряженных компонента дают массу положительно и отрицательно заряженным W-бозонам. Один нейтральный компонент дает массу Z-бозону. Бозон Хиггса является квантом оставшегося нейтрального компонента поля.