Продавец ловко швырнул на прилавок треугольный лоскут, в котором, по его словам, было 12 квадратных лианов (лиан — местная мера длины). Единичка попросила у продавца линейку и мелок, быстро прикинула что-то в уме, затем провела мелком всего-навсего три линии и прошлась по ним ножницами. Вместо одного большого треугольника у неё получилось пять небольших, притом неодинаковых размеров.
— Самый маленький я подарю Нулику, — сказала Единичка. — Те треугольники, что вдвое больше этого, останутся для Тани и для меня. Треугольник, который в три раза больше Нуликового, пойдёт Севе, а самый большой, который в четыре раза больше самого маленького, я отдам Олегу.
Как всегда, я не придавал никакого значения Единичкиной болтовне, понимая, что всё это было сказано ею просто так, от избытка энергии. Не могла же она и в самом деле тремя взмахами ножниц так точно разделить треугольник на пять частей, да ещё в таких последовательных отношениях: один к двум, ещё раз к двум, затем к трём и, наконец, к четырём.
Однако проверять её у меня охоты не было. Мы расплатились, но, выйдя из магазина, вдруг увидели, что манипуляции Единички заняли не так уж мало времени.
— Как бы чего не вышло с мини-Джерамини! — забеспокоилась Единичка. — Не вернуться ли нам за сынком, прежде чем двинуться дальше на поиски папаши?
Мы поспешили в кафе. Увы! Мини-Джерамини там уже не было.
— Как вы смели отпустить мальчика одного?! — напустился я на хозяина.
— Но он ушёл не один, — возразил тот, разводя руками. — За ним явился его законный отец, которого я давно знаю. Он очень торопился, сел в машину и уехал в неизвестном направлении.
Тут я пришёл в отчаяние, где и пребываю до настоящего времени. Потому дальнейшие сообщения откладываю до более благоприятного настроения.
ДВАДЦАТЬ ЧЕТВЁРТОЕ ЗАСЕДАНИЕ КРМ
решили провести на свежем воздухе, так сказать шутя-гуляючи. День был морозный, солнечный. Приятно было не спеша пройтись по тихим переулкам старого Арбата.
Так уж получилось, что это заседание стало как бы продолжением предыдущего, внеочередного: оно началось с разбора любопытных числовых зависимостей.
— Как вы думаете… — спросил президент, который шёл пятясь, чтобы видеть всю нашу компанию разом. — Как вы думаете, какое число меньше: 165 или 732? — И тут же.сам себе ответил: — Ясно, 165. Значит, Магистр не ошибся, выбрав верблюда с табличкой «165». А Единичка и впрямь транжирка.
Тут он наскочил на прохожего и долго извинялся, после чего продолжал путь более удобным способом.
— Не забывай, — сказала Таня, — что 165 вовсе не обозначало плату за проезд. Чтобы узнать цену, надо было с этим числом произвести ещё целый ряд манипуляций.
— Хоть бы и так, — хорохорился Нулик. — Все равно самое большое число, которое получится от перестановок цифр в числе 165, это 651. А 651 как-никак меньше, чем число 732, которое выбрала Единичка!
— А ведь правда… — раздумчиво протянул Сева. — Даже наименьшее число, которое получается от перестановок цифр 7, 3 и 2, — число 237 и то больше числа 165.
— Эх вы, теоретики! — поддразнила Таня. — Лучше подсчитайте, что должен был заплатить Магистр за своего верблюда и что Единичка — за своего.
— Это мы могим! — весело согласился президент и принялся писать веточкой на снегу. — Сперва сделаем все возможные перестановки цифр в числе 165. Вот они: 165, 156, 561, 516, 651 и 615. Теперь сложим эти числа. Получим… Не мешайте, а то я собьюсь… получим 2664. Проверим…
— И проверять нечего, все верно, — торопила Таня.
— Теперь подсчитаем, что должна была заплатить Единичка, — сказал Сева. — Вот перестановки цифр числа 732: 732, 723, 273, 237, 327 и 372. Сложим их и получим… что такое! Тоже 2664.
— В чём же дело? — недоумевал президент. — Выходит, в этом случае любое трехзначное число даст один и тот же результат? Или, может быть, 165 и 723 — числа специально подобранные?
— Уж конечно, специально, — сказала Таня.
— Вот это да! Значит, проезд на любом верблюде стоил одинаково. Но как же удалось подобрать такие числа?
— А ты посмотри на них внимательней, — посоветовала Таня. — Не найдётся ли у них какого-нибудь общего признака?
— Найдётся! — отвечал президент весьма язвительно. — Все цифры у них разные.
— Цифры действительно разные, — подтвердила Таня, — зато сумма этих цифр одна и та же: 12.
— Верно! — обрадовался Нулик. — 1+6+5=12. И 7+3+2 тоже равно двенадцати. Может быть, то же свойство было и у всех других чисел на верблюжьих табличках?
— Очень возможно. Недаром Единичка сказала, что погонщики в Террапантере — народ справедливый.
— И всё-таки… — Нулик сделал непреклонное лицо, — всё-таки я требую доказательства.
— Сей момент, ваше президентство! — насмешливо поклонилась Таня. — Будет сделано. Запишем любое трехзначное число в общем виде. Это 100a+10b+c. Понятно?
— Что за вопрос? Конечно! Здесь a — число сотен, b — число десятков, c — число единиц.
— Гениально! Теперь сделаем в этом числе все возможные перестановки цифр. Напишем их сразу столбиком, а потом сложим:
100a+10b+с
100a+10c+b
100b+10а+с
100b+10с+а
100c+10a+b
100c+10b+a
—.
200(a+b+c)+20(a+b+c)+2(a+b+c)
Не желаете ли, ваше президентство, преобразовать эту сумму? — спросила Таня.
— Желаю, — отвечал его президентство без особого энтузиазма. — Я бы… я бы вынес 2(a+b+c) за скобки.
— Совершенно с вами согласна. Получится при этом
2(a+b+c)(100+10+1).
— А это все равно что 222(a+b+c), — подсчитал Нулик. — Но что из этого следует?
— Только то, что сумма перестановок зависит не от самого числа, а от суммы его цифр. И значит, все трехзначные числа с одинаковой суммой цифр в этом случае всегда будут давать одно и то же число.
— Ха-ха! — выдохнул президент, несколько подавленный роскошным Таниным доказательством. — Выходит, для всех трехзначных чисел с суммой цифр, равной двенадцати, ответ будет всегда 222*12, то есть 2664. Теперь хорошо бы ещё узнать, что получится, если взять четырех-, пяти — или двенадцатизначные числа…
— Да то же самое, — сказала Таня, — только численный результат будет другой.
— Обязательно займусь этим на досуге! Жаль, досуга у меня маловато, — проворчал Нулик, постукивая ногой об ногу и выразительно поглядывая на уютные окна кафе, мимо которого мы как раз проходили.
Это было понято, как безмолвный сигнал к атаке, и через мгновение мы уже находились внутри, за стеклянной дверью.
В кафе было тепло и, к счастью, безлюдно. Я говорю — к счастью, потому что Нулик, предвкушая лакомое угощение, взыграл и принялся носиться между столиками, описывая вокруг них замысловатые фигуры.
— Это я плутаю по лабиринту, — объяснил он, — скоро доберусь до мини-Тавра. Только вот где найти цепочку Афродиты?
Олег комически схватился за голову.
— Опять этот младенец повторяет ошибки Магистра!
— Ничуть не бывало! — выкрутился президент. — Просто я вас подначиваю. Из педагогических соображений…
Олег понимающе кивнул.
— Из педагогических, говоришь? Ну, тогда тебе, стало быть, известно, что произносить надо Минотавр. И это тебе не мини, а совсем даже наоборот: огромное чудище. Получеловек, полубык.