— Ничего я нарочно не подгадывала. Так будет всегда и с любым числом.
— Эх, — сокрушался президент, — если бы не кино, непременно потребовал бы доказательства!
— Кино подождёт, а доказательство я тебе представлю. Таня взяла бумагу и написала четырехзначное число в общем виде:
1000a+100b+10c+d.
— Здесь, — объяснила она, — a — число тысяч, b — число сотен, c — число десятков и d — число единиц. Теперь изобразим с помощью этих букв те двузначные числа, которые остались на каждой половинке ассигнации. Получим
10a+b и 10c+d.
Вычтем оба эти двузначные числа из нашего четырехзначного:
1000a+100b+10c+d-(10a+b)-(10c+d).
После преобразований из всего этого получается вот что:
990a+99b.
Совершенно ясно, что это число непременно разделится на 99 и в ответе получится 10a+b. А это и есть то самое двузначное число, которое оставалось на левой половинке ассигнации.
— Тебе ещё бы две косички — не отличить от Единички! — экспромтом выпалил Сева и тут же спросил: — А что, твой результат справедлив только для четырехзначных чисел?
— Это уж ты сам выясняй, — отвечала Таня. — А теперь нам и вправду пора в кино.
— В кино, в кино! — захлопал в ладоши Нулик. — Тамошний брегет, наверное, вот-вот зазвонит…
— Ба! — встрепенулся Сева. — А про брегет-то мы и забыли. Тут наш Магистр опять малость оплошал. А может, и не он, а хозяин кафе. Где это он нашёл у Пушкина «желудок — верный наш брегет»?
— Как — где? — удивился я. — В «Евгении Онегине», конечно.
— Что-то не помню! — пробурчал Сева. — Есть там «пока недремлющий брегет, не позвонит ему обед»… Есть «но зов брегета им доносит, что новый начался балет».
— Правильно, — кивнул я, — только это строчки из первой главы. А «желудок — верный наш брегет» — из пятой. Так что на сей раз Магистр ничего не напутал.
— Вот мы говорим «брегет, брегет», — сказал Нулик, надевая пальто, — а что это такое?
— Всего лишь старинные часы со звоном. И называются они так по имени их изобретателя, парижского часовых дел мастера Брегета.
— Товарищи! — закричал президент. — Прошу! Умоляю! Поторопитесь! Зов брегета нам доносит, что новый начался сеанс.
Ну и память у этого малыша! Только раз слышал, а уже запомнил, да ещё перекроил на свой лад! Поистине волшебное дитя!
А в кино в тот день мы всё-таки опоздали и хроники не видели. Нулик по этому поводу выдал на-гора историческую фразу: «Заниматься наукой надо в свободное от кино время!»
РЕПОРТАЖ РАССЕЯННОГО МАГИСТРА
2 Марко 2
Международный автобус мчит нас с Единичкой в Сьеррахимеру. Драгоценный конверт в наших руках, и, следовательно, разгадка тайны исчезнувшей марки близка. Но недаром говорят: близок локоть, да не укусишь… От избытка предположений у меня лопается голова, и чтобы она действительно не лопнула, Единичка придумала небольшую разрядку.
— Как вы думаете, — спросила она, — чего больше: целых положительных чисел или их квадратов?
Это было так неожиданно, что я сразу и не понял, чего она от меня хочет, но тут же рассмеялся и ответил на её более чем детский вопрос:
— Разумеется, целых положительных чисел значительно больше, чем их квадратов.
Для наглядности я написал на бумажке последовательные квадраты натурального ряда чисел: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961.
— Взгляни сюда, — сказал я Единичке, — видишь, как редко встречаются в натуральном ряду квадраты целых чисел! Поначалу они расположены ещё более или менее близко: 1, 4, 9, 16, 25, 36… Но чем дальше, тем они реже. Вот, например, в третьей сотне первый квадрат 225, за ним сразу следует 256, потом 289. А в десятой сотне квадраты встречаются и того реже. Их всего два: 900 и 961. Теперь представь себе десяти — или стозначные квадраты, — между ближайшими из них такие расстояния, что от одного до другого нужно лететь самолётом. Так что тут и двух мнений быть не может: квадратов куда меньше, чем натуральных чисел.
Единичка, надо ей отдать справедливость, слушала меня не перебивая, но затем сказала:
— А по-моему, раз каждое целое число можно возвести в квадрат, значит, чисел и их квадратов совершенно одинаковое количество.
Ну и характерец! Знает ведь, что неправа, а всё-таки спорит.
— Что с того, что у каждого числа есть свой квадрат? — возмутился я. — Выкинь из натурального ряда все числа, представляющие собой квадраты, и ты увидишь, как мало пробелов образуется в этом ряду. Нет, квадраты твои просто тонут в общей куче чисел. И не спорь, пожалуйста!
— А я и не спорю, — хладнокровно сказала Единичка, — я только пытаюсь понять, в чём тут загвоздка. Допустим, я не стану выбрасывать квадраты, как предлагаете вы, а подпишу их по порядку под каждым числом натурального ряда: под единицей — единицу, под двойкой — четвёрку, под тройкой — девятку, под четвёркой — 16 и так далее.
1 2 3 4 5 6 7 8…
1 4 9 16 25 36 49 64…
Таким образом под каждым целым числом будет стоять его квадрат, и, стало быть, квадратов столько же, сколько целых чисел. Правда ведь?
— Не пытайся меня запутать! — вспылил я. — И вообще прекратим эту бесплодную дискуссию.
— Пожалуйста, — пожала плечами Единичка. — Но ведь от этого целых чисел не станет больше, чем их квадратов…
Ещё секунда — и я сразил бы её неоспоримым аргументом, но тут как раз автобус остановился у городских ворот, над которыми красовалась надпись: «Сьеррахимера». Чуть пониже белела табличка, оповещающая всех и вся, что вход и въезд в Сьеррахимеру посторонним воспрещён. Мы так и сели! Для чего же, спрашивается, надо было мчаться сюда сломя голову? И что теперь делать с конвертом? Как передать его пресловутому Кактусу? Ответа на это не было. В довершение всех бед, автобус, высадив нас, тотчас развернулся и как ни в чём не бывало укатил обратно в Сьеррадромадеру, а мы с Единичкой остались перед наглухо запертой решёткой.
— Голубчик, — обратился я к стоявшему у ворот часовому, — не скажете ли, отчего нас не пускают?
Ответ был столь же краток, сколь и неубедителен:
— Не велено!
— Это я и сам прочитал. Но по какой причине? — допытывался я.
— А по той, что вот уже восемь месяцев и двенадцать дней их превосходительство вице-губернатор решают задачу, которую задал им один проходимец. Решают, решают, да все без толку. А проходимец возьми да и скройся! Вот и приказано никого не пускать, пока задача не решится.
Услыхав это, я сразу понял, что не все потеряно.
— Мы спасены! — шепнул я Единичке и, приняв внушительный вид, сказал часовому: — Немедленно доложите вашему правителю, что дело его в шляпе, потому что ко двору его пожаловал сам Магистр Рассеянных Наук. А где Магистр, там нерешённых задач не бывает!
Слова мои, видимо, произвели на часового известное впечатление. Он тут же позвонил в комендатуру и попросил доложить о нас вице-губернатору.
Пока мы стоим и ждём ответа, позвольте рассказать вам о необыкновенном конверте, лежащем в моём рюкзаке, а главное — о великом открытии, сделанном Единичкой. Как вам уже известно, конверт был вскрыт и, кроме того, пуст. Поначалу это нас и озадачило и огорчило. Но тут Единичке пришло в голову обратить внимание на марку, наклеенную в правом верхнем углу конверта. И что бы вы думали? Только не падайте в обморок от неожиданности! Это была та самая марка, за которой мы с Единичкой гоняемся по всем террам и сьеррам, какие только существуют на белом свете! Да, да, та самая марка, на которой вместо Христофора Колумба изображён Марко Поло! Марка, сохранившаяся всего лишь в двух экземплярах, один из которых украден!