Интересно заметить, что при постоянном значении напряжения на вторичной обмотке трансформатора мостовая схема обеспечивает получение выпрямленного напряжения в два раза большего, а схема удвоения напряжения (см. рис. 39) — в четыре раза большего, чем двухполупериодная схема со средней точкой. Следует упомянуть, что в устаревшей литературе схема удвоения напряжения, приведенная на рис. 39, называется схемой Латура.
Рассмотрим еще две схемы выпрямителей с умножением напряжения. На рис. 40 приведена схема выпрямителя с учетверением напряжения, построенная по тому же принципу, что и схема, приведенная на рис. 38.
Рис. 40. Схема однополупериодного умножения напряжения
В течение одного полупериода заряжаются конденсаторы С1 напряжением обмотки и С3 суммой напряжения обмотки и заряженного конденсатора С2 минус напряжение на С1; при этом С2 разряжается. Конденсатор C1 заряжается до амплитуды, а С3 — до удвоенной амплитуды напряжения на обмотке. В течение следующего полупериода заряжаются С2 суммарным напряжением на обмотке и на С1, а также С4 суммой напряжений на обмотке, на С1 и на С3 минус напряжение на С2; при этом С1 и С3 разряжаются. Оба конденсатора С2 и С4 заряжаются до удвоенной амплитуды напряжения на обмотке. Результирующее напряжение снимается с соединенных последовательно и согласно конденсаторов С2 и С4. Частота пульсаций выпрямленного напряжения в этой схеме составляет, как и в схеме на рис. 38, 50 Гц.
На рис. 41 показана двухполупериодная схема учетверения напряжения, подобная схеме, приведенной на рис. 39.
Рис. 41. Схема двухполупериодного умножения напряжения
Принцип ее действия читатель может рассмотреть самостоятельно по аналогии с предыдущими схемами. Здесь частота пульсаций составляет 100 Гц, и два конденсатора С1 и С3 работают при напряжении, равном одинарной амплитуде напряжения вторичной обмотки трансформатора вместо одного конденсатора С1 в схеме на рис. 40. При одинаковом количестве элементов эта схема выгоднее предыдущей.
Достоинством схемы, изображенной на рис. 40, является возможность умножения напряжения в нечетное число раз.
Так, если удалить конденсатор С4 и подключенный к нему диод, а выпрямленное напряжение снимать с конденсаторов С1 и С3, получится утроенное напряжение. Схема же, показанная на рис. 41, позволяет получать только выпрямленное напряжение в четное число раз большее напряжения на вторичной обмотке трансформатора.
Выпрямление с умножением напряжения не ограничивается его учетверением; подключая дополнительные цепочки, состоящие из диода и конденсатора, можно увеличивать коэффициент умножения. Часто требуется получить высокое выпрямленное напряжение, измеряемое киловольтами. Для достижения этой цели имеются два пути: либо намотать высоковольтную вторичную обмотку трансформатора и выпрямить полученное с нее высокое напряжение простым выпрямителем, либо использовать схему умножения. Второй способ целесообразнее. Высоковольтные обмотки трансформаторов имеют низкую надежность, так как необходимо тщательно изолировать их от других обмоток и от сердечника, а также хорошо изолировать слои этой обмотки один от другого. Кроме того, сама намотка высоковольтных обмоток весьма трудоемка: приходится наматывать тысячи витков очень тонким проводом, который при малейшем натяжении легко рвется. Наконец, выпрямитель требует применения высоковольтных конденсаторов и диодов с очень большим допустимым обратным напряжением. Выход находят путем последовательного соединения нескольких конденсаторов и нескольких диодов. Но тогда при том же количестве конденсаторов и диодов целесообразнее собрать выпрямитель с умножением напряжения, одновременно избавившись от необходимости намотки высоковольтной обмотки трансформатора.