Пожарные в первую же ночь ликвидировали очаги пожара в машинном зале, и сделали это очень оперативно и точно. Иногда думают, что часть пожарных получила высокие дозы облучения потому, что они стояли на определенных точках как наблюдатели, ожидая, не возникнут ли новые очаги пожаров. Это не так, потому что в машинном зале находилось много масла, водород в генераторах, много источников, которые могли вызвать не только пожары, но и взрывные процессы, которые могли бы привести к разрушению 3-го блока. Поэтому действия пожарных в этих конкретных условиях были не только героическими, но и правильными, грамотными и эффективными, т. к. они обеспечивали первые точные мероприятия по локализации возможного распространения аварии.
Следующий вопрос возник, когда стало ясно, что из кратера 4-го разрушенного блока выносится довольно мощный поток аэрозольной газовой радиоактивности. Ясно было, что горит графит, и каждая частица графита несла на себе достаточно большое количество радиоактивных источников. Встала сложная задача. Обычно скорость горения графита составляет где-то тонну в час. В 4-ом блоке было заложено около 2,5 тыс. тонн графита. Следовательно, эта масса могла бы гореть примерно 240 часов, вынося с продуктами своего горения радиоактивность, распространяя ее на большие территории. При этом температура внутри разрушенного блока скорее всего была бы ограничена температурой горения графита – чуть выше 1500, и выше бы не поднималась, установилось бы некоторое равновесие. Следовательно, топливо – таблетки диоксида урана – могло бы не расплавиться и не давать дополнительного источника радиоактивных частиц. Но этот многодневный вынос с продуктами горения, конечно, привел бы к тому, что огромные территории оказались бы интенсивно зараженными различными радионуклидами.
Поскольку радиационная обстановка позволяла делать эффективные действия только с воздуха и с высоты не менее 200 м над реактором, то соответствующей техники, которая могла бы традиционно, с помощью воды, пены и других средств прекратить горение графита, не было, надо было искать нетрадиционные решения. Мы начали об этом думать. Наши размышления сопровождались постоянными консультациями с Москвой, где у аппарата ВЧ постоянно находился А.П. Александров, ряд сотрудников Института атомной энергии, сотрудники Министерства энергетики. И каждая служба держала соответствующую связь со своими московскими организациями. Уже на следующий день пошли различные телеграммы, предложения из-за рубежа, с разными вариантами воздействия на горящий графит с помощью различных смесей.
Логика принятия решений была такая. Прежде всего надо было ввести столько, сколько можно, боросодержащих компонент, которые при любых перемещениях топливной массы, при любых неожиданных ситуациях обеспечивали бы нахождение в кратере разрушенного реактора достаточно большого количества эффективных поглотителей нейтронов. К счастью, на складе оказалось незагрязненным достаточно большое количество – 40 тонн – карбида бора, который и был прежде всего заброшен с вертолетов в жерло разрушенного реактора. Таким образом, первая задача – задача введения нейтронного поглотителя в максимально большом количестве – была выполнена быстро и оперативно.
Вторая задача была связана с введением средств, которые стабилизировали бы температуру, заставляя энергию, выделяющуюся при распаде мощной топливной массы, затрачиваться на фазовые переходы. Первая мысль, которая мне пришла в голову – забросать максимальное количество железной дроби. На станции ее было достаточное количество, добавляется она обычно в строительный бетон, чтобы сделать его тяжелым. Но оказалось, что склад, на котором хранилась эта железная дробь, был накрыт проходящим первичным облаком взрыва, и работать с сильно зараженной дробью было практически невозможно. После обсуждений и многочисленных консультаций в качестве стабилизаторов температуры были выбраны две компоненты – свинец и доломит. Первый – достаточно легкоплавкий металл, который обладает некоторой способностью экстрагировать радиоактивные элементы и, застывая, создавать защитный экран от гамма-излучения. Оставалось опасность, что если температуры более высокие (1600–1700°), то заметная часть свинца может испаряться, и тогда в дополнение к радиоактивному загрязнению могут прибавиться свинцовые загрязнения местности, и эффективной роли этот компонент не сыграет. Поэтому группа из Донецка, принадлежавшая Министерству энергетики Украины, располагавшая тепловизорами шведской фирмы, начала постоянные облеты 4-го блока, фиксируя температуру поверхностей. Задача была непростая, потому что датчики в этих тепловизорах служили полупроводниками, и нужно было ухитряться правильно интерпретировать результаты, имея в виду, что мощные гамма-излучения, попадающие на полупроводники, существенно искажали результаты измерений. Поэтому я предложил тепловизорные измерения температуры различных точек 4-го блока дополнить прямыми термопарными измерениями. Эту операцию осуществлял Е.П. Рязанцев вместе с вертолетчиками, опуская термопары на длинных фалах. Это тоже была непростая работа.