Выбрать главу

риск  n:взвешенное отображение возможных результатов и связанных с ними последствий.

Таким определением риска мы пытаемся отучить вас от привычки думать о риске с помощью цифр и склонить вас вместо этого думать о нем наглядно (с помощью графиков). Прежде вопрос вашего босса о том, «каков риск не успеть к началу следующего года», казался требующим явного или подразумевающегося ответа в процентах:

• «Дело в шляпе, босс!» (по сути 100%-ная уверенность);

или

• «Я думаю, что шансы равны» (50%);

или

• «Разве что рак на горе свистнет!» (меньше 1%).

С нашим уточненным теперь понятием риска, мы отвечаем на этот вопрос диаграммой риска, подобной приведенной выше. Мы не разжевываем ответ для начальника, клиента или контрагента, а просто выкладываем карты на стол: «Как вы прекрасно знаете, в разработке программного обеспечения всегда есть элемент неопределенности, вот посмотрите на его размеры в этом проекте».

Характеристики диаграмм риска

Некоторые из приведенных выше диаграмм неопределенности были простыми гистограммами, где столбцы точно соответствовали перечисленным результатам. А другие были плавными кривыми. В чем разница? Рассмотрим для примера диаграмму, приведенную ниже. Чем диаграмма осадков слева отличается от той, что справа?

Разница состоит исключительно в «зернистости». Если данные взяты всего за 100 лет, то кривая на левом графике окажется неровной, и столбцы будут достаточно широкими, чтобы их можно было разглядеть. Если располагать данными за миллион лет, то кривая будет существенно более гладкой и столбцы будут все тоньше, сливаясь в непрерывную кривую, показанную справа.

Для практических целей собственные данные (результаты нескольких проектов, за которыми вы наблюдали внутри своей компании) оказываются «крупнозернистыми», а отраслевые тенденции, включающие тысячи проектов, оказываются гладкими. Без больших потерь строгости всегда можно округлить «зернистую» кривую до более гладкого близкого эквивалента.

Диаграммы риска часто имеют весьма характерные формы. Можно, например, встретить такие, которые математики называют нормальными или симметричными относительно средней точки:

Обычно более распространены асимметричные диаграммы, которые выглядят так:

<…> в том, что человеческая деятельность имеет тенденцию к именно <…> симметрии, сравнительно сильнее сгруппированной к одному из <…> обычно к левому, что указывает на более быстрое завершение). Наконец, есть класс странно выглядящих диаграмм, подобных следующим:

Совокупные и причинные риски

До сих пор мы сваливали в одну кучу риски двух разных типов. Мы приводили как профили рисков для целых проектов, выраженные диаграммами неопределенности, где показаны сроки сдачи, общие затраты и усилия, или версии, которые могли быть готовыми к заданной дате. Кроме того, мы говорили и о сложных (многокомпонентных) рисках, вроде производительности труда персонала или текучести кадров. Первая категория состоит из того, что мы называем совокупными (агрегированными) рисками, поскольку они относятся к проекту в целом; а вторую категорию мы называем причинными (слагающими) рисками. Ясно, что эти категории связаны между собой. Неопределенность относительно совокупного результата является прямым результатом неопределенностей причинных факторов, ведущих к успеху или провалу:

Процесс, происходящий между ними (процесс преобразования набора причинных рисков в совокупный риск) – это то, что мы будем рассматривать ниже в качестве «модели риска».

Как можно видеть, наша установка призывает использовать диаграммы риска как вход и выход этого процесса. Другими словами, каждый слагающий или причинный риск описан диаграммой риска, а мы используем автоматический подход для классификации причинных рисков и создания на их основе совокупного показателя риска, опять же в форме диаграммы.

Два типа моделей

То, что нам бы сейчас пригодилось, – комбинация генератора прогнозов и индикаторов риска. Это было бы чудесное устройство (или программный продукт). Сначала вам были бы заданы десятки вопросов о вашем проекте, а затем была бы выдана диаграмма риска, показывающая диапазон возможных дат завершения, каждая из которых отмечена неким уровнем неопределенности. За нас было бы сделано оценивание и проведен анализ неопределенности по тем оценкам, с которыми она связана.

Такое чудо служило бы отчасти для параметрического оценивания, отчасти для перекрывания неопределенности. Компонент для параметрического оценивания уже появился на рынке. Возможно, у вас уже есть этот инструмент, который либо приобретен вашей компанией, либо разработан собственными силами. Вы вливаете в него все, что вам известно о проекте (функциональные точки, параметры SLIM, предсказания модели СОСОМО[20] или что-то в этом духе), вместе с некоторой индивидуализирующей информацией об используемых вами процедурах и прошлой истории, а он выдает время, за которое проект может быть завершен.

Мы предлагаем вам продолжать использовать ваш нынешний инструмент оценивания, каким бы он ни был (даже если это мокрый палец на ветру), и объединить его с моделью риска, о которой пойдет речь в следующих двух главах. Этот инструмент – ваша производственная модель, поскольку он показывает, сколько вы можете произвести за какое-то время, а модель риска показывает, сколько неопределенности будет связано с производственной оценкой. Работая вместе, эти две модели взаимодействуют так:

Мы представили результат как график в форме диаграммы риска. Она показывает, насколько можно быть уверенным или неуверенным в возможности завершения проекта в любой заданный момент в будущем. Такая же схема может быть использована для создания диаграммы совокупного риска, показывающей версии, которые весьма вероятно подготовить к сроку сдачи в некотором диапазоне дат.

Единственным параметром, соединяющим эти модели, является N. Как предлагается на диаграмме, мы рекомендуем вам настроить свою производственную модель или инструмент оценивания на самый оптимистичный сценарий и определить N, то есть наилучший случай. Тогда модель риска перекрывает неопределенности для создания диаграммы совокупного риска.

Еще один нюанс относительно диаграмм риска

Для того, чтобы продемонстрировать следующую идею, придется построить очень грубую диаграмму неопределенности («крупнозернистость» сделает эффект более очевидным). Предположим, мы изучаем небольшие группы учащихся. У нас есть какие-то данные о них, включая вес в фунтах. Мы группируем данные по весу с шагом в 20 фунтов и обнаруживаем, что есть один ребенок в группе 101-120 фунтов, три – в группе 121-140 фунтов и два – в группе 141-160 фунтов:

Этот график можно рассматривать как диаграмму неопределенности. Положим, один из ребят готов прыгнуть вам на колени, и вы используете этот тип диаграммы, чтобы посмотреть, какова неопределенность ожидаемого веса. Диаграмма показывает относительную вероятность каждой из трех весовых групп. Точно такие же данные можно показать в слегка иной форме, сгруппированными кумулятивно:

вернуться

20

Конструктивная модель стоимости (Constructive Cost Model – СОСОМО), разработанная в конце 70-х годов Барри Боэмом. Построена на основе анализа ряда проектов, выполненных в основном в интересах Министерства Обороны США, устанавливает соответствие между размером системы в тысячах условных строк кода и «классом» проекта, с одной стороны, и трудоемкостью разработки системы, с другой стороны (прим. пер.)