Раз часы стали отставать, т. е. период колебания их маятника увеличился, значит, или удлинился маятник, или ускорение свободного падения вблизи земного экватора меньше, чем в Париже. Сначала первое предположение казалось правдоподобным. В Кайенне гораздо жарче, чем в Париже, от жары маятник вытянулся, а часы отстали. Но расчеты показали, что для замеченного отставания часов надо, чтобы температура в Кайенне была на 200 °C выше, чем в Париже. Следовательно, причина происшествия, поразившего Ш. Рише, заключалась в другом — в ускорении свободного падения, которое в Кайенне было меньше, чем в Париже.
В 1687 г. в «Математических началах натуральной философии» Исаак Ньютон детально объяснил «парадокс Рише». Он считал, что есть две причины, его вызывающие, — сплюснутость Земли у полюсов и вращение ее вокруг собственной оси.
Если бы Земля была идеальным шаром с плотностью, зависящей только от расстояния до его центра, то и тогда тела на экваторе весили бы меньше, чем на полюсе. При вращении Земли ее полюсы остаются неподвижными, а точки экватора движутся с максимальной линейной скоростью, поэтому любой предмет, перенесенный с полюса на экватор, стал бы (из-за воздействия центробежной силы) давить на поверхность Земли с меньшей силой, чем на полюсе. Иначе говоря, уменьшились бы при этом и сила тяжести, и ускорение свободного падения. Это одна из причин «парадокса Рише». Вторая причина — в сплюснутости Земли, в отклонении ее формы от шарообразной. На экваторе все тела находятся на 21 км дальше от центра Земли, чем на полюсах, а значит, и притягиваются ею слабее.
Точные измерения показали, что ускорение свободного падения на северном полюсе равно 983,234 см/с2, на экваторе оно примерно на 5,2 единицы меньше. Около 2/3 этой величины обусловлено вращением Земли, а 1/3 — ее сплюснутостью.
Маятниковые часы (или маятник) оказались удивительным прибором, чутко реагирующим на форму Земли и ее вращение. Так практически одновременно с геодезией родилась еще одна отрасль естествознания — гравиметрия — наука о силе тяжести и ее измерении. По гравиметрическим данным, сжатие Земли очень близко к 1: 298,3, что отлично сочетается с данными геодезии.
Но у гравиметрии есть и свои собственные, очень важные в практическом отношении задачи. Представим себе два одинаковых маятника — А и В. Первый из них качается над тем участком земной поверхности, под которым расположены породы повышенной плотности (например, железные руды). Под маятником В внутри земной коры обширная пустота (например, пещера). Какой из маятников колеблется быстрее? Маятник А притягивается Землей (за счет руд) сильнее, чем маятник В. Значит, и колебаться он будет быстрее. Вывод ясен: маятник способен выступать в роли разведчика земных недр. С его помощью можно узнать, где есть ископаемые, каково строение земной коры. Гравиметрия, конечно, решает и другие, практически важные задачи.
При гравиметрических измерениях важно обеспечить постоянство длины маятников, поэтому маятники изготовляют из почти не расширяющегося сплава (инвара), а в последнее время — даже из кварца. Что касается периодов колебаний маятников, то их измеряют высокоточными хронометрами.
Допустим, что один и тот же маятник неизменной длины в двух разных пунктах имеет периоды колебаний Т1 и Т2. Тогда соответствующие ускорения силы тяжести g1 и g2 связаны формулой g2=g1·(Т2/Т1).
Эта формула служит основой для относительных измерений силы тяжести, т. е. для сравнения ее значений, полученных в разных точках земной поверхности. Для абсолютных измерений g (в см/с2) использовали специальные так называемые оборотные маятники, для которых определялись и период, и длина.
Ныне маятниковый метод применяется лишь для решения немногих специальных задач, а абсолютные ускорения свободного падения измеряют методом свободного падения тел в вакууме. При этом ускорение падающего тела измеряют вполне современным способом: расстояния определяют с помощью лазерного интерферометра, а время «засекают» кварцевыми или молекулярными часами. Точность таких измерений очень высокая — средняя квадратическая погрешность не превышает 10-7 м/с2.
Фигуры вращающихся тел
Точно неизвестно, какой была первичная Земля. Однако в любом случае она не была абсолютно твердым телом, а значит, сохраняла способность к деформации, изменению формы под воздействием внутренних и внешних сил. Чтобы лучше представить себе, что тогда происходило, вместо реальной, очень сложной Земли вообразим ее идеализированную модель — исполинскую «каплю» однородной несжимаемой жидкости. Предположим, что внешние силы на эту «каплю» не действуют и ее форма обусловлена только игрой внутренних сил. Если бы «капля» не вращалась, то ее форма определялась бы только взаимным тяготением составляющих частиц, которые стремились бы подойти друг к другу как можно ближе. Это им удалось бы лишь при полной симметрии «капли». Иначе говоря, в этом случае идеализированная модель Земли имела бы форму шара.