Rolfe, A. 1896. A revision of the genus Vanilla. Journal of the Linnean Society (Botany) 32:439.
Chapter 5. Biotechnological Applications in Vanilla
Minoo Divakaran, K. Nirmal Babu, and Michel Grisoni
Introduction
Vanilla planifolia G. Jackson (syn. V. fragrans Andrews), is a tropical climbing orchid (Figure 5.1) known for producing the delicate popular flavor, vanilla (Purseglove et al., 1981) and is the second most expensive spice traded in the global market after saffron (Ferrão, 1992). The major vanilla-producing countries are Madagascar, Indonesia, Uganda, India, and the Comoros with Madagascar ranking first. Following the discovery of the New World by Columbus in 1492, the earliest vanilla dissemination record from Mexico is the one by Father Labat who imported three V. planifolia vines into Martinique in 1697. The lack of natural pollinators in the areas of introduction prevented sexual reproduction and pod production until the discovery of artificial pollination in the first half of the nineteenth century (Bory et al., 2008d). Continuous vegetative propagation, lack of natural seed set, and insufficient variations in the gene pool all hamper crop improvement programs.
FIGURE 5.1 V. planifolia vine—in full bearing.
In a short span of time, biotechnology has had a significant impact on the pattern of development and quality of life globally (Bhatia, 1996). The later part of the twentieth century saw the rise of new industries based on discoveries made in the field of biological sciences and the progress made over recent years in molecular biology, genetic engineering, and plant tissue culture have provided a new dimension to crop improvement.
In vitro culture is one of the key tools of plant biotechnology, which makes use of the totipotent nature of the plant cells, a concept proposed by Haberlandt (1902) and unequivocally demonstrated for the first time by Steward et al. (1958). It can be employed for the production of disease-free clones, mass cloning of selected genotypes, gene pool conservation, selection of mutants, raising of hybrids between sexually incompatible taxa through somatic hybridization, incorporating the desired traits by genetic engineering, and in the production of secondary metabolites in cultured cells or tissues (Thorpe, 1990). However, the realization of these objectives necessitates prior standardization and optimization of tissue culture procedures.
Problems to be Targeted
As a cash crop, vanilla plays a major role in the economy of countries such as Madagascar, the Comoros, Indonesia, and Uganda. Continuous clonal propagation of V. planifolia leads to monoculture, exposing the crop to severe damage (Gopinath, 1994) as vanilla is affected by a large number of pests and diseases (see Chapters 7, 8, 9, and 20). The introduction of new genetic material is greatly constrained by factors such as its asexual propagation, the fact that the flowers are mostly self-pollinated, and the threat posed to wild populations of vanilla by land pressures (Lubinsky, 2003). The lack of sufficient variability in the gene pool, the threat of destructive diseases that wipe out vanilla plantations, as well as the destruction of its natural habitats, make the search for alternative methods to introduce variability into the gene pool vital. The narrow gene pool can be broadened by using interspecific hybridization to combine the available primary gene pool of the genus Vanilla, with the secondary gene pool, that is, the close relatives of V. planifolia, which is an important source of desirable traits such as self-pollination, a lower dependence of flower induction on the photoperiod, a higher fruit set, indehiscence of the fruits, and disease resistance (Lubinsky, 2003).
Different species of vanilla are found in various geographical regions and their flowering seasons are not synchronized, bringing about difficulties in the movement of pollen to the receptor species to enable pollination between species. It is in such instances that the development of methods for storing viable pollen for longer periods becomes significant.
Improvements in quality characteristics, such as higher vanillin content, larger bean size, improved aroma and taste, and so on would benefit vanilla processors and consumers. To perfect the germination of immature embryos into a complete plant, embryo rescue techniques can be used for retrieval and regeneration of nonviable hybrid seeds. Cell culture or protoplast culture is useful for creating somatic hybrids for the transfer of characters from alien sources. Protoplasts can be used as target organs for transformation, provided they are made to regenerate into a complete plantlet. Clonal propagation of elite lines, in vitro conservation, and international germplasm exchange are possible using micropropagation techniques. Molecular markers such as DNA markers [random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), amplified fragment-length polymorphism (AFLPs)] and biochemical markers (isozyme, protein) can be used for the characterization of germplasm and somaclonal variants.
Genetic Diversity in Vanilla
V. planifolia is a crop that differs a little from its wild progenitors. This can be attributed to limited breeding and to recent domestication (Bory et al., 2008c; Lubinsky et al., 2008a). Several types have been recognized within the cultivated vanilla of Mexico differing in vegetative appearance or reproduction mode (Soto Arenas, 2003). The analysis of isoenzyme data of specimens from the vanilla plantations of northern Veracruz, Oaxaca, and elsewhere in Mexico showed little genetic variation in general (Soto Arenas, 1999), although plants originating from two main areas could be differentiated. Nucleotide sequence variation within introns of two specific protein-coding genes—namely, the calmodulin and the glyceraldehyde 3-phosphate dehydrogenase—were detected but were not able to differentiate among the Mexican types of vanilla. Outside the countries of origin, vanilla is likely to be of clonal origin and very little variation can be expected. The vanilla plantations of Réunion, Madagascar, Mauritius, and Seychelles have derived from a single cutting (Lionnet, 1958) and as per the present information, few differences in cultivated types of V. planifolia have been observed. However, recent studies revealed that self-progenies as well as polyploidization events have generated phenotypic diversity in cultivated vanilla in Réunion (Bory et al., 2008a, 2008b, 2008c).
At the genus level, molecular markers such as RAPD, AFLP, and sequence single repeats (SSR) have been developed over the last decade for studying genetic diversity.
RAPD was used to estimate the level of genetic diversity and interrelationships among different clones of V. planifolia and related species. The data confirmed the very limited variation within accessions of V. planifolia, indicative of its narrow genetic base and its close relationship with V. tahitensis J.W. Moore (Besse et al., 2004; Minoo et al., 2008; Schlüter et al., 2007). In a study including both leafy and leafless types, such as V. planifolia, V. tahitensis, V. andamanica Rolfe, V. pilifera Holtt., and V. aphylla Blume (Figure 5.2), there was reasonable variability indicating the possibility of natural seed set in the wild species. In spite of superficial morphological similarity, V. andamanica is not closely related to V. planifolia or V. tahitensis and its accessions are the most divergent from all other species studied, forming a separate and unique cluster (Minoo et al., 2008). There was considerable variability among the eight different accessions of V. andamanica, supporting the probability that this species did originate in the Andaman Islands, where sexual reproduction is likely (Minoo et al., 2008). Earlier, Rao et al. (2000) have reported the occurrence of natural seed set in India for V. wightiana.