};
Тогда наш gen_mem_fun_t запишется так:
tem
pl
ate<class R, class T>
struct gen_mem_fun_t {
explicit gen_mem_fun_t(R (T::*pm_)()): pm(pm_) {}
template<class TT> R operator()(TT p) {return gen_mem_fun_operator<R, T, TT>()(p, pm);}
private:
R (T::*pm)();
};
Проблема “return void”
Посмотрим внимательнее на реализацию функции operator() в нашем адаптере. Что будет, если мы захотим в качестве типа возвращаемого значения функции использовать void? Наша функция запишется так: void operator() {return void;}. С точки зрения стандарта все хорошо, но все в нашем мире определяется стандартом: есть компиляторы, которые не воспринимают такую конструкцию как допустимую.
ПРИМЕЧАНИЕ Таков, к примеру, Microsoft Visual C++ 6.0/7.0
К счастью, на помощь нам опять приходит частичная специализация:
template<class T, class TT>
struct gen_mem_fun_operator<void, T, TT> {
void operator()(TT p, void (T::*pm)()) {(p.operator->()->*pm)();}
};
template<class T>
struct gen_mem_fun_operator<void, T, T*> {
void operator()(T* p, void (T::*pm)()) {(p->*pm)();}
};
Частичная специализация
К сожалению, не все компиляторы поддерживают частичную специализацию шаблонных классов.
ПРИМЕЧАНИЕ К таким относится и Microsoft Visual C++ 6.0/7.0
Для решения этой проблемы можно использовать паттерн «traits», специфичный для C++. К сожалению, он не сможет помочь в случае, когда один из параметров шаблона специализируется типом, зависящим от другого параметра шаблона, но в случае проблемы «return void» он помочь сможет.
ПРИМЕЧАНИЕ Вопрос, реально ли вообще симулировать частичную специализацию шаблонов, где специализируемый параметр шаблона зависит от неспециализируемого, на компиляторе, не поддерживающем частичную специализацию шаблонов и поддерживающем специализацию вообще только для глобальных классов и функций, остается открытым. Я такой возможности не вижу. Таким образом, создать без помощи препроцессора код нашего адаптера, компилирующийся и под gcc и под Visual C++, не представляется возможным.
Введем вспомогательный класс
template<class R>
struct gen_mem_fun_traits {
template<class T>
struct signature {
typedef gen_mem_fun_base_t<R, T> base;
};
};
template<> struct gen_mem_fun_traits<void> {
template<class T> struct signature {
typedef void_gen_mem_fun_base_t<T> base;
};
};
Этот класс специализирован для специального случая функции, возвращающей void. Таким образом, хоть нам и придется ввести дополнительный класс для функций, возвращающих void, для клиента это будет выглядеть единообразно: gen_mem_fun_traits<rettype>::signature<memberclass>::base.
Сами по себе ветви вычислений различных вариантов тривиальны:
template<class R, class T>
struct gen_mem_fun_base_t {
protected:
gen_mem_fun_base_t(R (T::*pm_)()): pm(pm_) {}
public:
template<class TT> R operator()(TT p) {return (p.operator->()->*pm)();}
template<> R operator()(T* p) {return (p->*pm)();}
private:
R (T::*pm)();
};
template<class T>
struct void_gen_mem_fun_base_t {
protected:
void_gen_mem_fun_base_t(void (T::*pm_)()): pm(pm_) {}
public:
template<class TT> void operator()(TT p) {(p.operator->()->*pm)();}
template<> void operator()(T* p) {(p->*pm)();}
private:
void (T::*pm)();
};
Теперь определим сам gen_mem_fun_t:
template<class R, class T>
struct gen_mem_fun_t: gen_mem_fun_traits<R>::template signature<T>::base {
typedef gen_mem_fun_traits<R>::template signature<T>::base base_;
explicit gen_mem_fun_t(R (T::*pm_)()): base_(pm_) {}
};
Один момент здесь требует пояснения: typedef используется для того, чтобы компилятор понял, какому предку нужно передать в конструктор наш указатель на функцию-член.
И, наконец, gen_mem_fun вообще остался без изменений:
template<class R, class T>
gen_mem_fun_t<R, T> gen_mem_fun(R (T::*pm)()) {
return gen_mem_fun_t<R, T>(pm);
}
Заключение
Надеюсь, читатель понял, что создание адаптера как такового не было основной целью этой статьи, тем более что гораздо более общий вариант такого адаптера под названием bind находится в библиотеке boost. Основная задача, которая стояла передо мной, была такова: дать читателю некоторые навыки и умения, позволяющие не пасовать перед необходимостью внести какие-либо дополнения или изменения в STL, а также познакомить с некоторыми приемами, специфичными для C++ и полезными при необходимости работать с компиляторами, не вполне поддерживающими стандарты.
Я благодарю Павла Кузнецова и Андрея Тарасевича за плодотворную дискуссию в форуме, непосредственно предшествовавшую написанию этой статьи и давшую мне некоторые приемы и идеи, которые были освещены выше.