Выбрать главу
Рис. 1.20. Эскиз гидравлического ppm  из тетрадей Леонардо да Винчи

Леонардо вместо известного в то время водяного насоса употребил водяную турбину, сделав мимоходом одно из своих изобретений. Эта турбина В— обращенный насос — архимедов винт. Леонардо понял, что если лить на него воду, то он будет вращаться сам, превратившись из водяного насоса в турбину.

В отличие от современных ему и будущих изобретателей гидравлических ppm такого типа (водяной двигатель + водяной насос) Леонардо знал, что он работать не сможет. Воду, в которой нет разности уровней, он назвал очень образно и точно «мертвой водой» (aqua morta). Он понимал, что падающая вода может в идеальном случае поднять то же количество воды на прежний уровень и только; никакой дополнительной работы она произвести не может. Для реальных условий проведенные им же исследования трения дали основания считать, что и этого не будет, так как «от усилия машины надо отнять то, что теряется от трения в опорах». И Леонардо выносит окончательный приговор: «невозможно привести мельницы в движение посредством мертвой воды».

Эта идея о невозможности получения работы «из ничего» (например, «мертвой воды») была развита потом Р. Декартом и другими мыслителями; в конечном итоге она привела к установлению всеобщего закона сохранения энергии. Но все это произошло намного позже. Пока же изобретатели гидравлических ppm разрабатывали все новые их варианты, объясняя каждый раз свои неудачи теми или иными частными недоработками.

Рис. 1.21. «Типовой» гидравлический двигатель

Классическим примером гидравлического ppm может служить машина, показанная на рис. 1.21. Более сложный вариант такого двигателя (рис. 1.22), используемого в практических целях, взят из книги Г. Беккера «Новый театр машин» изданной в Нюренберге (1661). Этот двигатель, предназначенный для вращения точильного камня, был предложен итальянцем Якобом де Страда в 1575 г. (по другим источникам — в 1629 г.). Из нижнего водоема Sвинтовой насос Ошестерней, приводимой в движение от зубчатого колеса R,перекачивает воду в верхний лоток. Отсюда она сливается на колесо С, приводящее через вал Dв движение точильный камень. Через сложную систему передач (червяк и зубчатые колеса Е,G, Lи К)колесо Сприводит в движение и насос О.Для равномерности движения на вертикальном валу установлен маховик К.

Автор настолько уверен, что в поток Авода подается с избытком и ее хватит на все нужды, что через трубку Рсливает часть ее на смачивание точильного камня, у которого работает мастер. Здесь сделано все, что может предусмотреть опытный конструктор. Но в машине, которую он назвал «искусство верчения и кручения с двойной передачей», не учтено только одно обстоятельство: насос никогда не сможет поднять наверх столько воды, сколько нужно для рабочего колеса. Опыт каждый раз именно это и показывал.

Рис. 1.22. Гидравлический двигатель для привода точильного камня

Одно из ухищрений, призванных обойти трудности, состояло в том, чтобы заставить воду подниматься (и сливаться) в меньшем перепаде высот. Для этого предусматривалась каскадная система из нескольких последовательно соединенных насосов и рабочих колес. Такая машина, описанная в книге уже известного нам Д. Уилкинса, показана на рис. 1.23. Подъем воды осуществляется винтовым насосом, состоящим из наклонной трубы АВ,в которой вращается ротор LM,показанный внизу отдельно. Он приводится в движение тремя рабочими колесами H, I, К,вода на которые подается из трех расположенных каскадом сосудов Е, F, G.В оценке этого двигателя Уилкинс, как и в описанных ранее случаях, оказался на высоте. Он не только отверг этот двигатель из общих соображений, но даже подсчитал, что для вращения спирали «нужно втрое больше воды для вращения, чем то количество, которое она подает наверх».

Рис. 1.23. Трехступенчатый каскадный гидравлический ppm с одним архимедовым винтом 

Отметим, что Уилкинс, как и многие его современники, начал заниматься механикой и гидравликой с попыток изобрести вечный двигатель. Еще один пример стимулирующего действия ppm-1 на науку того времени!

«В первый раз, когда я подумал об этом изобретении, я с трудом удержался от того, чтобы подобно Архимеду не закричать «эврика».

Казалось, что, наконец, найдено легкое средство реализовать вечный двигатель», — писал он в 1684 г., вспоминая свои попытки создать гидравлический ppm из водяного колеса и винта Архимеда для подъема воды. Однако под влиянием экспериментальных неудач он нашел в себе силы провести теоретический анализ и перейти от беспочвенных фантазий к научному анализу.

Уилкинс дал первую классификацию способов построения вечных двигателей:

1) с помощью химической экстракции (эти проекты до нас не дошли);

2) с помощью свойств магнита;

3) с помощью сил тяжести.

Гидравлические ppm он относил (и совершенно правильно) к третьей группе.

В итоге Уилкинс написал четко и однозначно: «Я пришел к выводу, что это устройство не способно работать». Этот любитель науки — епископ — дал в XVII в. достойный пример того, как надо преодолевать заблуждения и находить истину. Если бы ему следовали дипломированные изобретатели ppm XX в.!

Среди других гидравлических ppm следует отметить машину польского иезуита Станислава Сольского, который для приведения в движение рабочего колеса использовал ведро с водой. В верхней точке насос наполнял ведро, оно опускалось, вращая колесо, в нижней точке опрокидывалось и пустое поднималось вверх; затем процесс повторялся. Королю Казимиру эта машина, которую патер демонстрировал в Варшаве (1661 г.), очень понравилась. Однако даже светские успехи титулованных изобретателей не могли скрыть того факта, что гидравлические ppm системы «насос — водяное колесо» на практике не работали. Нужны были новые идеи, используя которые, можно было бы поднять воду с нижнего уровня на верхний без затраты работы,не применяя механический насос. И такие идеи появились — как на основе использования уже известных явлений, так и в связи с новыми физическими открытиями.

Первая из идей, о которой нужно вспомнить, — использование сифона. Это устройство, известное еще с античных времен (оно упоминается у Герона Александрийского), использовалось для переливания воды или масла из сосуда, расположенного выше, в другой, расположенный ниже (рис. 1.24, а).Преимущество такого простого устройства, используемого и до сих пор, заключается в том, что можно отбирать жидкость из верхнего сосуда сверху, не делая отверстия в его дне или стенке. Единственное условие работы сифона — полное предварительное заполнение трубки жидкостью. Поскольку между верхним и нижним сосудами существует разность уровней, высота столба жидкости в длинном колене трубки больше, чем в коротком, на величину Н.Естественно, что жидкость будет самотеком переливаться из верхнего сосуда в нижний.