Необходимая, существенная связь между предметами и явлениями присуща самой природе и никак не зависит от воли людей. Она необходима,а не случайна, и при наличии определенных условий неизбежнопроявит себя тоже определенным образом. Это проявление одинаково везде и всегда, если существуют те же условия.
Одна из самых опасных, но часто встречающихся ошибок в трактовке законов, состоит в том, что свойства общественных законов непроизвольно переносятся на объективные законы природы. Некоторые люди никак не могут понять до конца, что законы природы, в отличие от законов, установленных обществом, нельзя ни изменить, ни нарушить.
Как же так? Ведь история науки ясно говорит, что по мере ее развития законы меняются. Ведь были всякие «флогистоны», «теплороды» и «эфиры», которые теперь исчезли! Считалось, что элементы не могут превращаться один в другой, а их теперь превращают. Если бы сто лет назад кто-нибудь предложил извлекать энергию из атомов, его бы осмеяли, а сейчас работают атомные электростанции. Геометрия Евклида дополнилась геометрией Лобачевского и Римана, а механика Ньютона уже многое не может объяснить; понадобилась теория относительности Эйнштейна! Почему же и другие законы, которые стоят на пути осуществления ppm-1 или ppm-2, тоже не могут оказаться устаревшими и неверными? То, что было верно сегодня, может стать неверным завтра!
Чтобы разобраться в том, насколько правильны эти и подобные им суждения, нужно сделать еще один шаг в разборе понятия «закон» и определить, что такое закон науки.В отличие от законов природы они существуют не сами по себе, а представляют собой отражениеобъективных связей внешнего мира в сознании человека. В этом смысле они вторичны,по отношению к законам, действующим в природе.
В результате исследовательской деятельности человека они обнаруживаются, открываются и затем формулируются на соответствующем языке — словами или формулами.
Известный закон Бойля-Мариотта, например, отражает объективно существующую связь между объемом vданного количества газа и давлением р,под которым он находится. Закон можно выразить словами: «объем данного количества газа (или удельный объем v)обратно пропорционален давлению р».Этот же закон можно выразить и математической формулой: pv= const.
Однако для того, чтобы судить о долговечности, «устойчивости» научного закона, нужно определить, насколько он может соответствовать объективному закону природы, правильно его отражать. Ведь природа необычайно сложна и многообразна в своей структуре, в связях своих объектов и их проявлениях. Несомненно, что ни один научный закон, какими гениями ни были бы люди, открывшие его, не отражает полностьюобъективные связи и отношения, существующие в природе. Он может отразить их лишь неполно, с определенной степенью приближения. По мере развития науки ее законы охватывают все более широкие области, уточняются, приближаются к закона природы, делаются адекватными им.
В обобщенном виде характер связи между законами природы и законами науки был четко выражен А. Эйнштейном: «Наши представления о физической реальности никогда не могут быть окончательными, и мы всегда должны быть готовы менять эти представления». П.Л. Капица, любивший парадоксы, говорил даже так: «Интересны не столько сами законы, сколько отклонения от них».
Значит ли это, что законы науки «смертны» и, прожив определенный срок, заменяются из-за отклонений на другие представления, более адекватные законам природы? Если это так, то изобретатели ppm правы, рассчитывая на
вполне возможное изменение законов науки, не разрешающих покадействие вечных двигателей.
Нет, это не так, хотя и Эйнштейн, и Капица, как и многие другие, абсолютно правы. Как же совместить эти две, казалось бы, диаметрально противоположные точки зрения? Представления меняются, отклонения изучаются, а законы остаются незыблемыми?
Дело в том, что законы науки (в частности, физики) не отменяются, а дополняются и развиваются,а это совсем другое. Поясним это положение несколькими примерами.
Возьмем тот же закон Бойля-Мариотта, о котором шла речь выше. Как показали эксперименты, он оказывается верным лишь приближенно. При больших давлениях и низких температурах зависимость между ри vприобретает более сложный характер, выражающийся более сложными уравнениями (уравнением Ван-дер-Ваальса и другими — так называемыми уравнениями состояния). Но в тех достаточно широких пределах, где свойства газа несущественно отклоняются от идеального, закон Бойля-Мариотта работает с достаточной точностью. Более того, он всегда в этой области будет правильным, какие бы невероятные открытия ни произошли.
То же самое происходит и с другими законами. Например, закон всемирного тяготения Ньютона был дополнен следствиями, вытекавшими из теории относительности, которые позволили объяснить новые факты, наблюдаемые астрономами.
При наличии мощных гравитационных полей или при скоростях, близких к скорости света, ньютоновская механика уже не работает. Но у нас на Земле (и даже при расчетах движения спутников Земли) ньютоновская механика остается в силе и будет всегда работать безупречно. «Отменить» ее никто не сможет.
Закон сохранения энергии был тоже расширен на основе теории относительности после открытия эквивалентности массы и энергии. (Его выражает известное уравнение е = mс 2, где е — энергия, m — масса, а с — скорость света в пустоте.) Поэтому при расчете, например, ядерных процессов это уравнение надоучитывать. Но в других отраслях техники, где скорости далеки от с, все уравнения балансов массы и энергии можно спокойно рассчитывать, совершенно не принимая во внимание это уравнение. Так же дело обстоит и в других случаях: новые законы оказываются более полными, глубокими и включаютпрежние как частный случай, но не отменяют их.В этой связи стоит вспомнить об одной дневниковой записи Д.И. Менделеева (10.VI. 1905 г.): «…По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает…».
Н. Бор сформулировал общее положение (1923 г.), отражающее эту закономерность развития науки: принцип соответствия,который гласит, что всякий более общий закон включает в себя старый закон как частный случай; он (старый) получается из нового при переходе к другим значениям определяющих его величин.
Применительно к закону Бойля-Мариотта это не выходящие за определенные пределы значения давления ри температуры T; применительно к механике — это значения скоростей частиц или тел и т. д. Следовательно, как бы ни развивалась дальше наука, ее «старые» законы никуда не исчезнут; «в пределах своей компетенции» они будут справедливы всегда [42].
Но как же тогда быть с теориями «флогистона», «теплорода», «эфира» и т. д.? Они-то несомненно отменены и исчезли!
Здесь тоже нужно разобраться, чтобы не впасть в ошибку.
Теория флогистона была развита Г.Э. Сталем (1660— 1734 гг.). Ее основой была мысль о том, что в состав всех горючих веществ входит одна общая составная часть («флогистон»), которая исчезает в процессе горения. Теория естественно вытекала из наблюдений хорошо всем известного процесса горения. Действительно, когда горит кусок дерева или угля, видно, что из всех его пор выходят языки пламени и газы уходят вверх; остатки превращаются в золу. Что может быть естественнее предположения, что некая огненная часть ушла, а зола осталась? Значит, дерево или уголь (или металл) — это соединение флогистона и золы (или оксида металла). Считалось также, что человеческий организм живет потому, что выделяет через легкие флогистон!
Теперь нам все это кажется смешным и алогичным. Но нельзя забывать, что в свое время теория флогистона помогла «объяснить», свести в единую концепцию и скоординировать большое количество известных в то время фактов.
42
В отрицании незыблемости законов природы (а, следовательно, и законов науки) изобретатели «незаконных» устройств смыкаются, как ни странно, со средневековыми схоластами, которые считали такие законы божественным установлением. Такая точка зрения жила довольно долго. Тот самый физик Гравезанд, о котором мы упоминали в связи с историей Орфиреуса, писал в своем курсе физики (1747): «Закон природы есть правило и закон, о которых Богу было угодно, чтобы известные движения всегда, т. е. во всех случаях, происходили бы по ним». Отсюда следует, что если богу угодно, можно, чтобы было и «не так», а иначе. Не этим ли объясняется, что Орфиреусу удалось запутать Гравезанда?