Выбрать главу

Однако она, как и многие другие теоретические обобщения того времени, была чисто качественной. Никому не приходило в голову взвесить металл и его оксид и убедиться, что металл весит меньше,а не большеоксида, как следовало из флогистонной теории. Очень немногие химики и физики делали количественные опыты, да и то часто смешивали вес с удельным весом (плотностью), совершенно серьезно считая фунт свинца тяжелее фунта пуха. Но как только в химию вошли вес и мера (в чем немалая заслуга «славного Роберта Бойля», как его назвал Ломоносов, (и самого Ломоносова)), теория флогистона стала разваливаться.

Таким образом эта и другие подобные теории не могли завершиться созданием каких-либо физических законов. Их исчезновение к отмене какого-либо закона не привело.Следовательно, история флогистона «не работает» как доказательство того, что «был закон, а потом оказался неверным».

Теперь о «теплороде». Его введение позволяло уже количественно установить законы калориметрии. Теория теплорода тоже исчезла. Но все связанные с ней законы калориметрии исправно действуют до сих пор (и будут незыблемы и впредь) несмотря на то, что теории теплорода давно нет.

Аналогичная ситуация и с гипотетической всепроникающей средой — «эфиром». Все количественные законы, отражающие объективные, существующие в природе связи, только дополнялись. Следовательно, и здесь нет поводов для утверждения, что законы науки, в частности физики, могут отменяться.

Все сказанное выше показывает, что доводы типа «раньше считалось, что элементы нельзя превратить один в другой, а теперь оказывается, что можно», «раньше не предполагали, что может существовать атомная энергия, а теперь она используется» и т. д., из которых по аналогии выводится тезис: «Сейчас считают, что вечного двигателя не может быть, а потом окажется, что он возможен», не годятся. Законов науки, запрещавших эти явления (в отличие от ppm), никогда не было; их появление никаких законов не нарушило.

Наконец, о той, защищаемой некоторыми изобретателями, точке зрения, что законы науки сдерживают творческую мысль изобретателей, «не дают ей развернуться».

Ничего не может быть ошибочнее. На самом деле все обстоит как раз наоборот; категорические запреты, налагаемые законами науки, способствуют работе творческой мысли исследователей и изобретателей. И дело не только в том, что эти законы предостерегают их от напрасной траты сил и времени на поиски в тупиковых направлениях. Законы не только запрещают ошибочные ходы мысли, но одновременно наводят на правильные решения. Например, «закон сохранения», взятый применительно к механике, даже в еще несовершенной, первоначальной форме, до установления строгого понятия об энергии, навел математиков и инженеров, от Архимеда до Галилея и Стевина, на открытия как законов равновесия, так и падения тел. Он же в других его проявлениях определил направление работ С. Карно и Р. Майера: первого на анализ действия тепловых двигателей, а второго — на изучение энергетических превращений в живых организмах.

Более того, как мы увидим дальше, понятие «теплород» в его рациональной части тоже осталось в современной науке под названием «энтропия».

Так всякое обоснованное отрицание чего-либо или запрет приводят в конечном счете к открытиям и созиданию нового — ив науке и в ее практических приложениях. «Свобода в рамках закона» оставляет, несмотря на ограничения, необъятный простор для настоящего творчества; об этом свидетельствует вся история науки и техники.

Чтобы закончить рассуждение о законах, необходимо сказать несколько слов об одной важной их разновидности — статистических законах.Именно к ним относится второй закон термодинамики, запрещающий ppm-2. Однако лучше это сделать не здесь, а в следующей главе, специально посвященной второму закону. К ней мы и перейдем.

Глава третья.

ИДЕЯ ppm-2 и ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

У кого не уяснены принципы во всей логической полноте и последовательности, у того не только в голове сумбур, но и в делах чепуха.

Н. Г. Чернышевский

3.1. Основная идея ppm-2. Уточнение понятий

 Утверждение закона сохранения энергии — первого закона термодинамики — сделало попытки создать ppm-1 абсолютно безнадежным занятием. И хотя они все еще продолжаются, «генеральное направление» мыслей создателей ppm изменилось. Новые варианты вечных двигателей рождаются уже в полном согласии с первым началом термодинамики: сколько энергии поступает в такой двигатель, ровно столько же и выходит. Эти двигатели даже называют иначе, чтобы избежать термина «вечный двигатель».

Тем не менее, несмотря на согласие с первым законом и маскирующие названия, эти двигатели остаются типичными ppm и сохраняют их основной признак — абсолютную невозможность осуществления.

Дело в том, что соблюдение какого-либо одного, даже очень важного закона вовсе не гарантирует возможность того или иного явления. Каждое из них определяется несколькими законами.Поэтому оно может происходить только в том случае, если не нарушает ни одногоиз тех законов, которые к нему относятся.

В частности, для любых тепловых машин соблюдение первого начала термодинамики необходимо, но недостаточно. Существует еще и второе началотермодинамики, соблюдение требований которого столь же обязательно. Новые вечные двигатели, о которых пойдет речь ниже, относятся именно к тепловым машинам; они могли бы работать, только нарушая ограничения, налагаемые вторым началом термодинамики. Поэтому такой двигатель и был назван «вечный двигатель второго рода» (ppm-2). Впервые этот термин ввел известный физико-химик В. Оствальд в 1892 г. [1.14] по аналогии со старым классическим ppm (после этого ставшим ppm-1).

Оствальд не имел в виду какие-либо конкретные изобретения, а рассматривал невозможность реализации такого двигателя в принципе, с общих теоретических позиций.

Кто придумал первый ppm-2, установить трудно; во всяком случае, они появились не ранее последней четверти XIX в. В принципах ppm-2 нет такого разнообразия, как в принципах ppm-1. Основная идея ppm-2 едина для всех самых разнообразных его проектов. Изложим ее для начала языком самих изобретателей, хотя, как мы увидим далее, используемая ими терминология не очень точна [43].

Предоставим слово ведущему идеологу этого направления проф. В.К. Ощепкову [3.1]. Он ставил задачу таким образом: «…отыскать такие процессы, которые позволили бы осуществить прямое и непосредственное преобразование тепловой энергии окружающего пространства в энергию электрическую. В этом я вижу величайшую проблему современности». И далее: «…открытие способов искусственного сосредоточения, концентрации рассеянной энергии с целью придания ей вновь активных форм будет таким открытием в истории развития материальной культуры человечества, что по практическим последствиям его можно сравнить разве только с открытием первобытным человеком способов искусственного добывания огня».

Если отвлечься от оценки вдохновляющих перспектив рассматриваемой идеи (вспомним пушкинского Бертольда: «perpetuum mobile!.. Я не вижу границ творчеству человеческому…»), а вникнуть в ее существо, то она сводится к тому, что рассеянная «тепловая энергия» окружающего пространства «извлекается», концентрируется и превращается в электрическую энергию, могущую производить работу. Нарушения первого закона термодинамики здесь нет. Сколько энергии забирается из «окружающего пространства», столько и превращается в электроэнергию.

Такая идея, действительно, чрезвычайно заманчива. «Концентрированная» энергия использовалась бы для нужд человечества, «рассеивалась» бы при этом в окружающей среде, а затем ее можно было бы снова «концентрировать» и пускать в дело. В энергетике человечества осуществился бы вечный круговорот энергии, который позволил бы «сразу убить двух зайцев» — снять как проблему поиска источников энергии, так и проблему теплового, химического и радиационного загрязнения окружающей среды.

вернуться

43

Это, конечно, не случайность. Путаная терминология (об этом уже говорилось в предыдущей главе) большей частью соответствует путанице в идеях; точная терминология, напротив, выявляет, «высвечивает» ошибки.