В реальных условиях L ЭЛ< L ЭЛ.М.вследствие потерь; для этого случая величины L ЭЛпоказаны штриховыми линиями. Из диаграммы можно снять величины, определяющие коэффициент преобразования (термический КПД):
и эксергетический КПД:
Для идеального процесса η eравна единице; (Е' 1+ Eʺ 1) — Е 2для реального меньше единицы, как и должно быть «по науке».
Таким образом, электрохимическое получение электричества проходит в полном соответствии со вторым началом термодинамики и никак не «концентрирует энергию окружающей среды». Напротив, реальный ЭХГ, выдающий L ЭЛ< L ЭЛ.М., увеличивает энтропию, как и любое реальное устройство преобразования энергии (и вообще все на свете — от микроорганизма и растения до велосипедного насоса и атомной электростанции).
Этим примером мы закончим рассмотрение «избранных» проектов ppm-2. Все остальные идеи такого же рода при тщательном анализе неизбежно оказываются неработоспособными.
Постоянные неудачи, преследующие всех изобретателей ррм-2, никак не охлаждают порывов наиболее активных их сторонников; они продолжают не только отстаивать, но и развивать свои идеи.
В качестве примера полезно привести отрывок из трудов к.т.н. Н.Е. Заева, который в 1976 г. громил термодинамику [83], а потом, через 15 лет, перенес свои пророчества уже с теории на практику. Вот как он представляет себе энергетику ближайшего будущего [5.5].
«Энергетическое изобилие, как видим, может придти совсем не от изобилия огня, а с другой стороны… Концентраторы энергии окружающей среды (КЭС, кэссоры) на самых различных принципах — вот, основа энергетики изобилия. Для нее характерна локальность: как правило, энергия будет добываться на месте потребления (в домах, часах, приемниках). Автомобили станут электромобилями с непривычными формами. Новая деталь их — сильно развитые постоянно заиненные теплообменные поверхности. Эти радиаторы и будут поглощать тепло воздуха — преобразуемое в электроэнергию. Вдоль побережий озер и морей будут электростанции помощнее: ведь вода более богата теплом. Всеобщая доступность энергии положит конец урбанизации мира, начнется эрозия, растворение городов… Исчезнут всевозможные ЛЭП-100,500,1000 — ведь потери в них достигают 20%, остынут котлы ТЭЦ, утихнут гидротурбины, истлеют за ненадобностью подземные кабели».
Этот образец нового литературного жанра — «антинаучной фантастики» наглядно показывает, как далеко в сторону от реальности могут зайти «пророчества» людей, которые никак не могут усвоить научные положения, противоречащие их желаниям.
Бывают, правда, хотя и редко, случаи, когда «вечные двигатели» исправно работают. Но тогда в конечном счете неизбежно выясняется, что в основе их действия лежит вполне законная идея, не имеющая отношения к ppm-2. Некоторые из таких устройств описаны в следующем параграфе.
5.4. Работающие вечные двигатели (псевдо-ppm)
В этом разделе будут описаны некоторые действительно работающие (или могущие работать) двигатели, которые по всем внешним признакам соответствуют ppm. На самом деле, естественно, они никакого отношения к ppm не имеют. Отсюда и приставка «псевдо» — «не настоящие, поддельные».
Секрет работы некоторых из них теперь известен, однако есть и такие, которые можно принять (или выдать) за ppm, так как найти и объяснить причину их движения не всегда просто.
Эти двигатели появились давно. Они очень разнообразны по устройству; чаще всего их применяли для привода «вечных» часов, не нуждавшихся в заводе, движущихся игрушек, моделей машин и т. д. Общая черта таких моделей ppm заключается в том, что они действительно работают неограниченно долго, казалось бы, без каких-либо видимых причин. На людей, не знакомых с принципами их действия, они производят сильное впечатление. У некоторых сторонников «энергоинверсии» эти игрушки возбуждают даже надежды как «прототипы» ppm-2. Однако вполне научное объяснение всегда находится. Но есть и такие псевдо-ppm, секрет которых пока не открыт; сведения об одном из них мы приведем ниже.
Насколько известно, первым изобретателем, придумавшим и осуществившим двигатель, который работал, извлекая без помощи какого-либо постороннего источника нужную энергию из окружающей среды, был голландский инженер и физик Корнелиус Дреббель (1572-1633 гг.). Этот очень знаменитый в свое время человек, о котором теперь незаслуженно редко вспоминают, был несомненно выдающимся исследователем и изобретателем с необычайно широким кругозором, исключительным даже при сравнении с другими светилами конца XVI — начала XVII в. Биографы писали о нем, например, так: «Он был человеком высокого разума, остро мыслящий и переполненный идеями, касающимися великих изобретений… Он жил как философ…». Большая часть его работ была проделана в Англии, где он служил при дворе короля Иакова I.
Его книга на латинском языке с характерным для тех времен названием «Послание к просвещеннейшему (sapientissimus) монарху Британии — Иакову — об изобретении вечного двигателя» была издана в 1621 г. в Гамбурге. Насколько далеко он смотрел вперед, можно видеть из краткого перечисления только некоторых его достижений.
Дреббель разработал первый известный в истории техники термостат — устройство, в котором автоматически поддерживалась заданная температура независимо от ее изменений снаружи. Он сам изготовил и наладил всю необходимую для этого, говоря посовременному, «систему автоматического регулирования». Идея этого термостата была использована в инкубаторе, честь изобретения которого тоже принадлежит Дреббелю.
Дреббель изобрел, сконструировал, построил и испытал на Темзе подводную лодку, которая успешно преодолела дистанцию от Вестминстера до Гринвича (около 12 км). Она представляла собой нечто вроде вытянутого в длину водолазного колокола. Приводилась лодка в движение гребцами (от 8 до 12), сидящими внутри на скамейках, установленных так, что ноги людей не доходили до уровня воды. Самое, пожалуй, интересное, это навигационные средства и особенно система жизнеобеспечения экипажа, которые тоже были созданы Дреббелем.
Направление определялось традиционным путем — посредством компаса, но глубина погружения — поновому, посредством ртутного барометра. Это был достаточно точный прибор, так как каждый метр глубины погружения соответствовал 76 мм высоты ртутного столба.
Дня обеспечения дыхания экипажа изобретатель применил селитру, которая при нагревании выделяла кислород. Оценить талант (если не гениальность) Дреббеля можно, если учесть, что кислород был открыт шведским химиком К. Шееле в 1768-1773 гг., т. е. только через полвека. Дреббель, несомненно, был отличным химиком. Об этом свидетельствуют не только разработка им химической системы жизнеобеспечения, но и другие изобретения — детонаторы для мин из гремучей ртути Hg(ONC)2, технологии получения серной кислоты действием азотной кислоты на серу (это отметил Д.И. Менделеев в «Основах химии»), использования солей олова для закрепления цвета при окраске тканей кошенилью. Если ко всему перечисленному выше добавить, что Дреббель был специалистом по оптическим приборам, линзы для которых он шлифовал на изобретенном им самим станке, то этого будет вполне достаточно, чтобы оценить его заслуги.
Дреббель занимался и вечным двигателем. Однако такой человек, как он, не мог пойти стандартным путем, очередной раз изобретая колеса с грузами или водяные мельницы с насосами. Ему было совершенно ясно, что таким путем вечный двигатель не создать.
В 1607 г. он продемонстрировал Иакову I «вечные» часы (запатентованные им еще в 1598 г.), приводимые в движение, естественно, столь же «вечным» двигателем. Однако в отличие от многочисленных других устройств с таким же названием, он действительно в определенном смысле был «вечным». После показа королю часы были выставлены во дворце Этлхем на обозрение всем желающим и вызвали сенсацию среди лондонцев.