Если сократить выражение (3) на массу m, то получим инверсную запись закона Ньютона (4). Как видим, ускорение свободного падения не зависит от массы падающего тела. В этом выражении (4) мы также можем вынести за векторные скобки скалярные величины.
(5)
Два правых крайних сомножителя тождественны до векторного "звания". Здесь у нас нет никакого выбора, какой из них вектор – вектором может быть только один из этих двух тождественных величин. Вместе с тем, отметим, что средний сомножитель (6) сам по себе имеет довольно туманный векторный смысл
(6)
Введём новый термин – близость по аналогии с терминами электротехники – сопротивление и проводимость, являющимися взаимно обратными величинами. Соответственно, в законе гравитации такими взаимно обратными величинами можно считать удалённость и близость.
Следует признать, что вектор близости или, тождественно, обратной величины удалённости в уравнении (6) сам по себе имеет весьма туманный, неопределённый смысл. Однако, в уравнении имеется "свободный", скалярный сомножитель, левый. Конечно, куда его поместить, как говорится, дело вкуса. Однако, замечаем некоторое сходство уравнения (6) и уравнения (3). Если в уравнении (3) мы вынесем за векторные скобки одну из тождественных величин – близостей, что определённо является разумным, и сократим на массу m, то получим тот же результат, что и при внесении в векторные скобки уравнения (6) этой скалярной величины GM
(7)
Получается, что выше в выражении (4) вектором мы справедливо признали величину, содержащую это массивное тело, поскольку вывели мы его из выражения (3), в котором векторной величиной в скобках однозначно и очевидно является величина, также содержащая эту массу – ускорение свободного падения g. Таким образом, вполне логично и даже бесспорно признать, что величина (7), ускорение свободного падения является вектором – у неё есть и величина и направление. Следует признать, что мы доказываем, причём весьма скрупулёзно, по сути, довольно очевидное обстоятельство: ускорение свободного падания является вектором. Однако это обстоятельство имеет большое значение: гравитационный потенциал можно трактовать через это ускорение. А именно: величина ускорения свободного падения в данной точке равна произведению гравитационного потенциала притягивающего тела в этой точке на её близость к этому телу. Близость, напомним, это обратная величина удалённости, то есть
(
8)
Следовательно, это выражение (8), как и (1) также бесспорно является верным – векторами в них являются левые сомножители. Таким образом, мы считаем доказанным и строго обоснованным утверждение, что гравитационный потенциал является векторной величиной. В связи с этим отметим ещё одно очень важное следствие из векторной формы гравитационного потенциала:
Интегрирование этого векторного уравнения даже по всему бесконечному пространству Вселенной даёт нулевое значение. Иначе говоря: гравитационный потенциал от всего вещества Вселенной в каждой точке пространства равен нулю точно так же, как и от конечной сферически симметричной области окружающего пространства. В сущности это очевидно и без вычислений, без интегрирования. Для заданной точки в бесконечной стационарной изотропной Вселенной для любой удалённой точки всегда найдётся другая точка, симметричная ей и создающая такой же по величине, но противоположный по направлению вектор гравитационного потенциала, сводящий суммарный потенциал к нулю. В таком виде гравитационный парадокс, как видим, теряет свой первоначальный смысл.
Отметим небольшую условность в наших формах записи вектора гравитационного потенциала. Поскольку операция деления скаляра на вектор не определена, правильнее векторное уравнение потенциала записывать без указания удалённости (близости) как самостоятельно вектора, а рассматривая его как скалярную величину в составе собственно вектора потенциала
Хаббловский гравитационный потенциал
Наши выкладки сделаны для стационарной Вселенной. В расширяющейся Вселенной на гравитационный потенциал точки влияет масса только видимой части Вселенной, то есть, галактики и другие объекты, находящиеся в пределах сферы Хаббла. Всё, что дальше границы сферы, никакого гравитационного влияния на центр сферы Хаббла не оказывают, поскольку скорость их удаления превышает скорость света и, соответственно, скорость распространения гравитационного притяжения.