Его описание творческого процесса различает три ключевых этапа: подготовка, вынашивание и озарение. Подготовка представляет собой сознательные логические усилия, направленные на то, чтобы увидеть проблему, точно сформулировать ее и попробовать решить традиционными методами. Этот этап, когда подсознание получает задание и материал для работы, Пуанкаре считал очень важным. Вынашивание происходит, когда вы прекращаете думать о задаче, отвлекаетесь от нее и занимаетесь чем-то другим. А подсознание тем временем начинает перебирать и комбинировать идеи, часто довольно дикие, и продолжается это до тех пор, пока вдали не забрезжит свет. Если повезет, результатом станет озарение: подсознание даст вам сигнал, и в вашем мозгу как будто вспыхнет лампочка — возникнет готовый ответ.
Такое творчество подобно хождению по натянутому канату. С одной стороны, вы не можете решить сложную проблему, пока не познакомитесь как следует с областью, к которой она относится, а также с множеством других тем, которые могут пригодиться, а могут и не пригодиться в работе, просто на всякий случай. С другой стороны, если, изучая все нужные области математики, вы обратитесь к стандартному, уже много раз безрезультатно опробованному пути, то, возможно, уже не сумеете выбраться из наезженной колеи и ничего нового не откроете. Фокус в том, чтобы много знать и сознательно собирать свои знания воедино, работать над этим неделю за неделей… а затем отложить проблему в сторону. Тогда за дело возьмется интуитивная часть вашего сознания: она отсмотрит все идеи, повертит их так и эдак, оценит, где «холодно», а где «горячо», и сообщит вам, если что-нибудь найдет. Произойти это может в любой момент: Пуанкаре однажды понял, как нужно решать задачу, мучившую его несколько месяцев, выходя из автобуса. Шриниваса Рамануджан, индийский математик-самоучка, создававший замечательные формулы, часто видел новые идеи во сне. А Архимед, согласно легенде, нашел способ определить содержание золота в сплаве, принимая ванну.
Пуанкаре особо указал, что без первоначального периода подготовки успеха не достичь. Подсознанию, настаивал он, необходимо дать как можно больше пищи для размышления, в противном случае удачные идеи, которые в конечном итоге могут привести к решению, просто не возникнут. Вдохновения без трудового пота не бывает. Кроме того, Пуанкаре наверняка знал — ведь об этом знает любой математик-исследователь, — что одного такого трехэтапного процесса редко бывает достаточно. Решение серьезной задачи, как правило, требует нескольких озарений. Этап вынашивания одной идеи может быть прерван вспомогательным процессом подготовки, вынашивания и озарения какой-то другой задачи, решение которой оказалось необходимым для работы над первой, основной идеей. Решение любой стоящей задачи, великой или не слишком, обычно включает в себя множество таких последовательностей, заключенных одна в другой, как замысловатые фракталы Бенуа Мандельброта. Вы решаете задачу, разбивая ее на подзадачи. Вы убеждаете себя, что если удастся решить эти подзадачи, то затем из полученных результатов можно будет собрать решение задачи в целом. Иногда они решаются, иногда приходится возвращаться к началу пути. Иногда подзадача сама рассыпается на несколько кусочков. Даже уследить за происходящим и удержать в голове общую картину порой очень и очень непросто.
Я назвал работу подсознания «интуицией». «Интуиция» — одно из удобных, но вводящих в заблуждение слов, таких как «инстинкт», которые широко используются, хотя и не имеют четкого значения. Подобными словами называют нечто непонятное, присутствие чего тем не менее отрицать невозможно. Математическая интуиция — это способность разума чувствовать форму и структуру и распознавать закономерности, которые мы не в состоянии уловить на сознательном уровне. Интуиция не обладает кристальной чистотой осознанной логики, зато способна привлечь наше внимание к вещам, которые мы никогда не стали бы рассматривать сознательно. Нейробиологи еще только начинают понимать, как человеческий мозг справляется с гораздо более простыми задачами. Понятно, однако, что интуиция, как бы она ни работала, существует благодаря структуре мозга и его взаимодействию с внешним миром.
Зачастую главное, чем помогает в работе интуиция, — она подсказывает, где у задачи слабые места, где к ней можно подступиться с максимальными шансами на успех. Математическое доказательство подобно сражению или, если вы предпочитаете менее воинственные сравнения, шахматной партии. Как только потенциально слабое место выявлено, исследователь бросает в бой (т. е. на его изучение) все свои возможности исследователя, весь математический аппарат, которым владеет. Как Архимед нуждался в точке опоры, чтобы перевернуть Землю, так и математик-исследователь нуждается в рычагах воздействия на задачу. Одна-единственная ключевая идея может раскрыть ее, сделать доступной для стандартных методов. Ну а после этого довести решение задачи до конца — дело техники.