Выбрать главу
xn + yn = zn

при n бóльших 2 не имеет решений в целых числах. Фалтингс решил, что ему удалось продвинуться в доказательстве Великой теоремы Ферма с помощью изучения геометрических поверхностей, связанных с различными значениями n. Поверхности, связанные с уравнениями Ферма при различных значениях n, отличаются друг от друга, но обладают одним общим свойством — у них всех имеются сквозные отверстия, или, попросту говоря, дыры. Эти поверхности четырехмерны, как и графики модулярных форм. Двумерные сечения двух поверхностей представлены на рис. 23. Поверхности, связанные с уравнением Ферма, выглядят аналогично. Чем больше значение n в уравнении, тем больше дыр в соответствующей поверхности.

 Рис. 23. Эти две поверхности получены с использованием компьютерной программы «Mathematica». Каждая из них представляет геометрическое место точек удовлетворяющих уравнению xn + yn = zn (для поверхности слева n=3, для поверхности справа n=5). Переменные x и y здесь считаются комплексными

Фалтингсу удалось доказать, что, поскольку такие поверхности всегда имеют несколько дыр, связанное с ними уравнение Ферма могло бы иметь лишь конечное множество решений в целых числах. Число решений могло быть любым — от нуля, как предполагал Ферма, до миллиона или миллиарда. Таким образом, Фалтингс не доказал Великую теорему Ферма, но по крайней мере сумел отвергнуть возможность существования у уравнения Ферма бесконечно многих решений.

Пятью годами позже Мияока сообщил, что ему удалось продвинуться еще на один шаг. Ему тогда было двадцать с небольшим лет. Мияока сформулировал гипотезу относительно некоторого неравенства. Стало ясно, что доказательство его геометрической гипотезы означало бы доказательство того, что число решений уравнения Ферма не просто конечно, а равно нулю[21]. Подход Мияоки был аналогичен подходу Уайлса в том, что они оба пытались доказать Великую теорему Ферма, связывая ее с фундаментальной гипотезой в другой области математики. У Мияоки это была алгебраическая геометрия, для Уайлса путь к доказательству лежал через эллиптические кривые и модулярные формы. К великому огорчению Уайлса, он все еще бился над доказательством гипотезы Таниямы-Шимуры, когда Мияока заявил о том, что располагает полным доказательством собственной гипотезы и, следовательно, Великой теоремы Ферма.

Через две недели после своего выступления в Бонне Мияока опубликовал пять страниц вычислений, составлявших суть его доказательства, и началась тщательнейшая проверка. Специалисты по теории чисел и алгебраической геометрии во всех странах мира изучали, строка за строкой, опубликованные вычисления. Через несколько дней математики обнаружили в доказательстве одно противоречие, которое не могло не вызывать беспокойства. Одна из частей работы Мияоки приводила к утверждению из теории чисел, из которого, при переводе на язык алгебраической геометрии, получалось утверждение, противоречившее результату, полученному несколькими годами раньше. И хотя это не обязательно обесценивало все доказательство Мияоки, обнаруженное противоречие не вписывалось в философию параллелизма между теорией чисел и геометрией.

Еще через две недели Герд Фалтингс, проложивший путь Мияоке, объявил о том, что обнаружил точную причину кажущегося нарушения параллелизма — пробел в рассуждениях. Японский математик был геометром и при переводе своих идей на менее знакомую территорию теории чисел не был абсолютно строг. Армия специалистов по теории чисел предприняла отчаянные усилия залатать прореху в доказательстве Мияоки, но тщетно. Через два месяца после того, как Мияока заявил о том, что располагает полным доказательством Великой теоремы Ферма, математическое сообщество пришло к единодушному заключению: доказательство Мияоки обречено на провал.

Как и в случае прежних несостоявшихся доказательств, Мияоке удалось получить немало интересных результатов. Отдельные фрагменты его доказательства заслуживали внимания как весьма остроумные приложения геометрии к теории чисел, и в последующие годы другие математики воспользовались ими для доказательства некоторых теорем, но доказать Великую теорему Ферма этим путем не удалось никому.

Шумиха по поводу Великой теоремы Ферма вскоре утихла, и газеты поместили краткие заметки, в которых говорилось, что трехсотлетняя головоломка по-прежнему остается нерешенной. На стене станции нью-йоркской подземки на Восьмой стрит появилась следующая надпись, несомненно, вдохновленная публикациями в прессе по поводу Великой теоремы Ферма: «Уравнение xn + yn = zn не имеет решений. Я нашел поистине удивительное доказательство этого факта, но не могу записать его здесь, так как пришел мой поезд».

В потемках

Уайлс, о котором мир тогда еще ничего не знал, с облегчением вздохнул. Великая теорема Ферма по-прежнему оставалась непобежденной, и он мог продолжать сражаться с ней, надеясь доказать ее с помощью гипотезы Таниямы-Шимуры. «Много времени я проводил за письменным столом. Иногда мне удавалось свести общую проблему к чему-нибудь весьма конкретному — то это был многообещающий замысел, который мог привести к доказательству, то какая-нибудь деталь, показавшаяся мне странной, то статья, в которой я не мог разобраться. Если мне в голову приходила какая-нибудь идея, которая неотступно преследовала меня настолько, что я не мог ни писать, ни читать, ни думать о чем-нибудь другом, то я отправлялся на прогулку к озеру. Я обнаружил, что, гуляя, могу полностью сосредоточиться на каком-нибудь очень конкретном аспекте проблемы, абстрагируясь от всего остального. У меня с собой всегда был наготове листок бумаги и карандаш, и если мне в голову приходила какая-нибудь идея, то я всегда мог сесть на скамейку и немедля записать ее».

Через три года непрекращающихся усилий, Уайлсу удалось совершить ряд прорывов. Он применил к эллиптическим кривым группы Галуа, рассматривая «образы» этих кривых в пространствах над арифметикой вычетов по модулю степени простого числа. Тем самым, ему удалось сделать первый шаг рассуждения по индукции. Уайлс опрокинул первое домино и теперь пытался найти метод, который мог бы помочь опрокинуть все остальные домино. На первый взгляд могло бы показаться, что это — естественный путь к доказательству, но для того, чтобы преодолеть пройденную часть пути, от Уайлса потребовалась необычайная решимость, чтобы не поддаться сомнениям в периоды неуверенности в себе.

Уайлс сравнивает математическое исследование с блужданием впотьмах в незнакомом доме. «Вы входите в первую комнату. Темно. Кромешная тьма. Вы то и дело натыкаетесь на мебель, но постепенно узнаете, где что стоит. Наконец, месяцев через шесть или около того, вы нащупываете выключатель, и внезапно становится светло. Вы отчетливо видите, где вы. Затем вы переходите в следующую комнату и проводите там шесть месяцев впотьмах. Так же обстоит дело и с прорывами в решении проблемы. Иногда озарения происходят мгновенно, иногда в течение одного-двух дней. Но в любом случае, они являются кульминацией предшествующих им многомесячных блужданий впотьмах. Без таких блужданий никаких озарений просто не было бы».

вернуться

21

Эти утверждения неверны. Для случая алгебраических поверхностей неравенство Мияоки было им же доказано (обобщая предшествующее неравенство Ф. А. Богомолова). То, что арифметический аналог неравенства Мияоки влечет теорему Ферма было показано А. Н. Паршиным. Более подробно см. Паршин А. Н. Дополнение редактора к книге «Алгебра и теория чисел (с приложениями)». – М.: Мир, 1987. С. 267–271. — Прим. ред.