Выбрать главу
В. Нернст

Аррениус постоянно следил за научными публикациями и с нетерпением ждал выхода очередного тома «Докладов Шведской Академии наук» — в этом журнале должна быть напечатана статья Вант-Гоффа, о которой тот писал своему шведскому коллеге еще в прошлом году. Очередной том пришел в конце 1886 года. До позднего

вечера Аррениус просидел в библиотеке. В своей статье Вант-Гофф рассматривал отклонения свойств водных растворов электролитов от законов осмотического давления и законов Рауля и вводил изотонический коэффициент L Данные Вант-Гоффа полностью подтверждали теорию диссоциации электролитов. Понижение температуры замерзания растворов электролитов должно быть больше ожидаемого, потому что частиц в растворе больше — часть молекул распалась на ионы. Теперь, используя коэффициент i, можно было легко вычислить степень диссоциации данного электролита, то есть узнать, какой процент молекул в растворе распался на ионы. Пользуясь приведенными данными, Аррениус вывел формулу, которая связывала степень диссоциации электролитов с коэффициентом Вант-Гоффа. В статье Вант-Гоффа приводились значения коэффициентов для многих растворов электролитов, и Аррениус принялся за вычисление степени их диссоциации.

До сих пор он определял степень диссоциации электролита только на основании опытных данных по электропроводности растворов. Совпадут ли полученные этим путем результаты с вычисленными по выведенной формуле?

Дрожащими от волнения руками Аррениус достал старые лабораторные журналы. Данные совпадали! Полученные совершенно различными способами они абсолютно однозначно показывали, что в растворах электролитов происходит диссоциация, которую можно охарактеризовать лишь одним числом.

«Если раньше моя идея о диссоциации молекул электролита в водном растворе могла считаться только гипотезой, то теперь, после статьи Вант-Гоффа, сомнений нет — это теория».

Наступили дни лихорадочного, напряженного труда. Сначала Аррениус написал две статьи: «Опыт расчета диссоциации растворенных в воде веществ» и «Об аддитивных свойствах разбавленных растворов солей», которые хотел отослать на родину. Но поскольку европейские ученые практически не знали шведского языка, он обобщил обе статьи в одну — «О диссоциации растворенных в воде веществ» и опубликовал на немецком языке в 1887 году[353]. В этой статье излагались основные положения теории Сванте Аррениуса об электролитической диссоциации.

Вскоре после этого Аррениус и Нернст уехали в Грац, чтобы продолжить работу у Больцмана[354].

Аррениус вел оживленную переписку с Вант-Гоффом; оба ученых чувствовали необходимость встретиться, чтобы обменяться мнениями и провести совместные исследования. Теория электролитической диссоциации нуждалась в поддержке — немногие пока еще поняли и по-настоящему оценили ее. Требовались новые факты, новые теоретические исследования.

Аррениус отправился в Амстердам в начале 1888 года. Перед этим он заехал в Киль, чтобы встретиться с Максом Планком[355], который одним из первых принял его теорию. Их разговор касался главным образом применения закона действующих масс Гульдберга и Вааге к равновесию диссоциации. Планк уже провел некоторые исследования и с удивлением констатировал, что закон Гульдберга и Вааге неприменим к сильным электролитам.

Когда Аррениус приехал в Амстердам, Вант-Гофф встретил его вопросом:

— Вам известно, что закон действующих масс неприменим к сильным электролитам?

— Мы с Планком уже обсуждали это явление, — ответил Аррениус.

— Но тогда возникает еще один вопрос: есть ли в таком случае смысл говорить о диссоциации и об установлении равновесия?

— Вы не правы, — разгорячился Аррениус. — В сильных электролитах разбавление ведет к небольшому увеличению концентрации ионов, в то время как в растворе слабого электролита концентрация ионов при разбавлении увеличивается в пятнадцать-двадцать раз. Благоприятные объекты — слабые электролиты, и именно на них надо проверить закон действующих масс.

Помолчав немного, Вант-Гофф обратился к своему ассистенту-

— Что ж, Райхер, оставьте пока растворы солей. Проверим на органических кислотах, все они слабые электролиты.

Первые же изменения, которые провел Райхер с растворами уксусной кислоты, показали, что закон действующих масс остается в силе и независимо от разбавления константа равновесия не изменяет своего значения. Это придало уверенность исследователям, и они с увлечением продолжали работу. Аррениус провел ряд определений, связанных с понижением температуры замерзания растворов электролитов, чтобы вычислить коэффициент Вант-Гоффа, а потом рассчитать и степень электролитической диссоциации. По этим данным можно было найти и константу диссоциации, которую Райхер определял экспериментально.

Вскоре Вильгельм Оствальд выступил с краткой публикацией, в которой сообщалось, что применяя закон действующих масс к слабым электролитам, ему удалось вывести простую зависимость, названную им законом разведения. К этой же зависимости пришли Вант-Гофф и Райхер после обработки результатов своих измерений.

— Это неоспоримое доказательство правильности вашей теории, — поздравил шведского ученого Вант-Гофф.

Через некоторое время Аррениус закончил намеченные им опыты и уехал в Лейпциг. Он хотел снова встретиться со своим старым другом Оствальдом, который руководил теперь Лейпцигским институтом физической химии, и провести некоторые измерения в его лаборатории.

Институт физической химии находился в старом здании, где прежде размещался Сельскохозяйственный институт. Помещения были тесными и неудобными, но в институте кипела напряженная научная работа. Под руководством Оствальда здесь занимались молодые энтузиасты, которые внесли свой вклад в развитие появившейся новой науки — физической химии — и впоследствии приобрели всемирную известность. Вальтер Нернст создавал основы осмотической теории гальванических элементов. Эрнст Бекманн конструировал приборы для определения молекулярных весов различных веществ [созданный им специальный термометр (термометр Бекмана) и в наши дни широко применяется в физико-химических лабораториях]; Георг Бредиг[356] определял константы диссоциации органических кислот.

В Лейпциге Аррениус провел новые исследования, которые расширили теорию электролитической диссоциации. Самыми существенными из них были определения теплового эффекта диссоциации. Установив влияние температуры на изменение электропроводности растворов различных электролитов, Аррениус вычислил тепловой эффект их диссоциации. С другой стороны, теория предусматривала, что теплота нейтрализации концентрированных кислоты и щелочи должна быть постоянной, независимо от природы реагирующих кислоты и щелочи, так как процесс протекает только между водородными и гидроксильными ионами и практически не зависит от остальных ионов раствора. Опыты подтвердили это предположение. Во всех случаях теплота нейтрализации оказалась равной 13 800 калорий.

При изучении влияния температуры на инверсию сахара Аррениус впервые заговорил об энергии активации химических реакций. В процессе теоретической обработки результатов он вывел уравнение, связывающее константу равновесия с энергией активации данной реакции и температурой. Сегодня это уравнение называется уравнением Аррениуса и является одним из основополагающих в физической химии.

К концу летнего семестра 1888 года сотрудники Оствальда разъехались на каникулы. Аррениус тоже уехал на родину. Он любил Швецию и мечтал о том дне, когда сможет остаться там навсегда, но шведские ученые все еще не признавали заслуг своего соотечественника. Только старый профессор Эдлунд радовался возвращению любимого ученика. Он поделился с Аррениусом проблемами, которые волновали его в последнее время.

вернуться

353

В статье “Ober die Dissociation der in Wasser gtlosten Stoffe” [Z. phys. Chem., 1, 631–648 (1887)] Аррениус изложил окончательно разработанную теорию электролитической диссоциации. Он писал о распаде молекул электролитов на электрически заряженные ионы, ввел понятие «диссоциация» и «степень диссоциации», привел богатый фактический материал в подтверждение своей теории, а также дал метод расчета величины диссоциации электролита, сделав тем самым шаг от качественной гипотезы к точной количественной теории.

вернуться

354

Людвиг Больцман (1844–1906) — австрийский физик, иностранный чл.-корр. Петербургской Академии наук с 1899 г., автор крупнейших работ по кинетической теории газов (постоянная Больцмана), статистической физике и термодинамике (статистика Больцмана, H-теорема Больцмана, закон Стефана — Больцмана); активно выступал против идеалистической «энергетики» Оствальда и махизма. О Больцмане см.: Кудрявцев П. С. Курс истории физики. 2-е изд., испр., доп. — М.: Просвещение, 1982; с. 245–250 и др.; Храмов Ю. А., ук. соч., с. 38–39; Выдающиеся физики мира, ук. соч., с. 268–274; Голин Г. М. Классики физической науки. — Минск: Вышэйш школа, 1981, с. 72–75; Больцман Л. Статьи и речи. — М.: Наука, 1970; Больцман Л. Избранные труды. — М.: Наука, 1984, — (Классики науки).

вернуться

355

Макс Карл Эрнст Людвиг Планк (1858–1947) — выдающийся немецкий физик; основоположник квантовой теории, иностранный член АН СССР с 1926 г. Его исследования по распределению энергии в спектре черного тела («закон Планка», 1900 г.) положили начало развитию квантовой физики. Он установил «постоянную Планка», выполнил работы по статистической физике и теории относительности, выступал с критикой махизма. В 1918 г. Планк был удостоен Нобелевской премии по физике. О Планке см.: Биографический словарь, т. 2, ук. соч., с. 131; Кудрявцев П. С, ук. соч., с. 227–238 и др.; Макс Планк. — М.: Изд-во АН СССР, 1970; Томсон Д. П. Дух науки. — М.: Знание, 1970, с. 153–158. Выдающиеся физики мира, ук. соч., с. 320–326; Hermann A. Max Planck: In Selbstzeugnissen und Bilddokumenten. — Reinbek; Rowohlt, 1973; Планк М. Избранные труды. — М.: Наука, 1975. — (Классики науки) -Спасский Б. И. История физики. Ч. II. — 2-е изд., перераб., доп. — М.: Высшая школа, 1977, с. 211–217 и др.; Кляус Е. М., Франкфурт У. И. Макс Планк. — М.: Наука, 1980; Голин Г. М., ук. соч., с. 102–106; Храмов Ю. А., ук. соч., с. 215–216.

вернуться

356

Георг Бредиг (1868–1944) — немецкий ученый, профессор Высшей технической школы в Цюрихе (1910 г.) и Карлсруэ (с 1911 г.); иностранный чл.-корр. АН СССР с 1929 г.; проводил детальные исследования взаимосвязи подвижности ионов с другими свойствами растворов, разработал метод приготовления коллоидальной платины и других металлов («неорганические ферменты»), изучал явление катализа и структуру катализаторов, адиабатические реакции, жидкие кристаллы. О Бредиге см.: Partington J. R., ук. соч., т. 4, с. 681; Джуа М., ук. соч., с. 402; Волков и др., ук. соч., с. 78.