Выбрать главу

Мир состоит из непредсказуемых кирпичиков-частичек. И поэтому мир непредсказуем. Не фатален. Случайностей. Флуктуация лежит в основе мира.

Но если мир случаен в своей основе, почему тогда существуют физические законы? Законы Ньютона… Закон Кулона… Второе начало термодинамики? Закон Ома? Закон всемирного тяготения? Законы газовой динамики? Почему они выполняются не от случая к случаю, а всегда? Где же непредсказуемость?

Она в микромире.

А в макромире поведение массивных тел, состоящих из триллионов частиц, в простых случаях взаимодействия вполне предсказуемо. Почему? Да потому, что в микромире вероятность наступления разных событий разная. Волновая функция говорит: вероятность обнаружить частицу тут, а не там составляет, скажем, 90 %. Или, что то же самое, 90 % всех частиц будут находиться тут, а не там.

Это значит, что процесс с огромным числом частиц пойдет именно в том направлении, в каком движется большинство из них. Именно неравномерность распределения вероятности создает направленные процессы. Направленные, значит, необратимые. Необратимые процессы создают иллюзию стрелы физического времени, которое, как известно, необратимо. Но необратимо не само время, разумеется («отдельно» времени не существует), необратимы просто проходящие в пространстве физические процессы. Человек старится, египетские пирамиды разрушаются, Солнце когда-нибудь погаснет.

Тем не менее все равно существует некая отличная от нуля вероятность, что чайник, поставленный на плиту, вместо того чтобы вскипеть, замерзнет. Однако она столь исчезающе мала, что практически можно сказать: Второе начало термодинамики никогда не нарушается — тепло всегда передается от более нагретых тел к менее нагретым. Хотя теоретически, конечно, все физические законы носят статистический характер. То есть вдруг могут и не исполниться на секундочку. Но скорее вы выиграете в лотерею сотню миллиардов долларов, даже не купив лотерейного билета, чем кирпич вдруг, вместо того чтобы упасть вниз, полетит вверх.

Ага! — скажете вы. Значит, макромир все-таки предсказуем! А ты говорил, что мир не фатален!

Отвечаю. Я не зря написал «в макромире поведение массивных тел, состоящих из триллионов частиц, в простых случаях взаимодействия вполне предсказуемо». У меня был сильный соблазн облегчить фразу, выкинув «в простых случаях взаимодействия». Но я не стал этого делать. Потому что физические законы — это идеальные модели, которые работают идеально только в идеальных условиях. Это раз. И два — в случаях реальных, сложных, многофакторных взаимодействий многих тел, полей и явлений предсказать что-либо бывает весьма затруднительно. Кто-нибудь с точностью до 100 % предсказывал погоду или цены на нефть? То-то же.

Мир не фатален. Сложные системы, то есть те, которые описываются не простенькими формулами физических законов, каковые мы все с тем или иным успехом проходили в школе, а нелинейными дифференциальными уравнениями… такие системы ведут себя как трудно- или вовсе непредсказуемые. Почему? Ведь вероятность поведения частиц в микромире распределена неравномерно — что-то более вероятно, что-то менее, а значит, большинство частиц ведут себя так, а не иначе. Это, как мы уже поняли, и позволяет работать физическим законам.

А потому сложные системы труднопредсказуемы, что в некоторых из них при определенных обстоятельствах малое воздействие может привести к большим результатам. Если система находится в неустойчивом равновесии, как карандаш, стоящий на острие, любой случайный толчок в ту или другую сторону уведет систему из состояния равновесия и ситуация начнет развиваться либо в одну сторону, либо в другую. Если вы направляете бильярдный шар на остроугольный предмет, то, в зависимости от случайных крохотных изменений его траектории, шар может после удара покатиться либо влево, либо вправо. Микроизменение может кардинально поменять судьбу макрообъекта. А микроизменение — это изменение на уровне микромира, то есть отдельных непредсказуемых частиц.

Сложные системы живут по законам странных аттракторов. Аттрактор — это колебательная математическая функция. Странный аттрактор — это колебательная функция с необычным поведением. Развиваясь, аттрактор выходит на какой-то устойчивый режим и начинает колебаться вокруг точки равновесия. А потом вдруг, в какой-то момент по непонятной причине резко срывается, улетает и начинает колебаться уже вокруг другой точки равновесия. Точки улета назвали точками бифуркации. Точка бифуркации — это такая точка, малое случайное воздействие в которой может выбросить систему очень далеко. Странное поведение, правда? Потому такие функции математики и назвали странными аттракторами.