Выбрать главу

Сегодня очевидно, что переход от компьютеров к интернету, а затем к машинному обучению был неизбежен. Компьютеры сделали возможным интернет, тот породил поток данных и проблему безграничного выбора, а машинное обучение использует потоки данных, чтобы решить проблему безграничного выбора. Чтобы сдвинуть спрос от «одного размера на всех» до длинного, бесконечно разнообразного списка вариантов, одного интернета мало. У Netflix может быть хоть сто тысяч разных DVD-дисков, но, если клиент не знает, как найти то, что ему понравится, он будет по умолчанию выбирать хиты. И только когда Netflix обзавелся обучающимся алгоритмом, который угадывает ваши вкусы и советует музыку, длинный хвост менее популярных исполнителей «взлетел».

Когда-нибудь произойдет неизбежное: обучающиеся алгоритмы станут незаменимым посредником и в них сосредоточится власть. Алгоритмы Google во многом определяют, какую информацию вы видите, Amazon — какие продукты вы покупаете, а Match.com — с кем вы станете встречаться. Последний этап — выбрать из предложенных алгоритмом вариантов — все равно придется преодолеть вам, однако 99,9 процента отбора будет проходить без вашего участия. Успех или неудача компании станет зависеть от того, будут ли алгоритмы машинного обучения предпочитать ее продукцию. Успех экономики в целом, то есть получат ли все игроки нужные продукты по лучшей цене, будет зависеть от того, насколько хороши обучающиеся алгоритмы.

Лучший способ гарантировать, что алгоритмы машинного обучения станут отдавать предпочтение продукции вашей компании, — применять их. Победит тот, у кого лучше алгоритмы и больше данных. Здесь проявляется новый сетевой эффект: тот, у кого больше клиентов, собирает больше информации, лучше обучает модели, завоевывает новых клиентов и так далее по спирали (а с точки зрения конкурентов — по порочному кругу). Перейти с Google на Bing, может быть, даже проще, чем с Windows на Mac OS, но на практике вы этого не сделаете, потому что благодаря удачному старту и большей доле на рынке Google лучше знает, чего вы хотите, даже если непосредственно технологии у Bing не хуже. Новичкам на рынке поисковиков можно только посочувствовать: не имея данных, они вынуждены бороться против систем, которые обучают свои алгоритмы более десятка лет.

Можно подумать, что в какой-то момент данные просто начнут повторяться, однако точки насыщения не видно, и «длинный хвост» продолжает тянуться. Вы, конечно, и сами видите: рекомендации Amazon или Netflix пока еще очень грубы, а результаты, которые выдает Google, оставляют желать много лучшего. С помощью машинного обучения можно улучшить каждое свойство продукта, каждый уголок сайта. Ссылку внизу страницы лучше сделать красной или голубой? Попробуйте оба варианта и посмотрите, какой соберет больше кликов. А еще лучше вообще не выключать обучающиеся алгоритмы и постоянно корректировать все элементы сайта.

Та же динамика наблюдается на любом рынке, где имеется много вариантов и огромный объем данных. Гонка в разгаре, и побеждает тот, кто учится быстрее. Дело не только в лучшем понимании клиента: компании могут применять машинное обучение к каждому аспекту своей деятельности при условии, что на эту тему есть данные, а источники данных — компьютеры, устройства связи и все более дешевые и вездесущие сенсоры. Сейчас любят повторять, что «данные — это новая нефть» и, как и с нефтью, переработка — большой бизнес. IBM, как и все остальные корпорации, построила свою стратегию роста на предоставлении аналитических услуг компаниям. Бизнес видит в данных стратегический ресурс: что есть у нас, но отсутствует у конкурентов? Как воспользоваться этим преимуществом? А какие данные есть у конкурентов, но нет у нас?

Как банк, не располагающий базами данных, не может тягаться с банком, их имеющим, так и компания, не применяющая машинное обучение, не сможет соперничать с теми, кто его использует. Пока в первой компании будут писать тысячи правил для прогнозирования пожеланий покупателей, алгоритмы второй компании найдут миллиарды правил, по целому набору для каждого отдельного клиента. Такая конкуренция напоминает атаку с копьями на пулеметы. Конечно, машинное обучение — крутая новая технология, но для бизнеса дело даже не в этом: ее придется применять, потому что другого выбора просто нет.